
Lecture 6 p.1

Faculty of Computer Science, Dalhousie University 23-Sep-2024
CSCI 4152/6509 — Natural Language Processing

Lecture 6: Counting N-grams

Location: Carleton Tupper Building Theatre C Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– Regular expressions in Perl
– Use of special variables
– Backreferences, shortest match

– Text processing examples
– tokenization
– counting letters

– Elements of Morphology

Lemmatization is a word processing method in which a surface word form, i.e., the word form as it appears in text,
is mapped to its lemma, i.e., the canonical form as it appears in a dictionary. For example, the word working would
be mapped into the verb work, or the word semantically would be mapped to the lemma semantics.

6.1 Morphological Processes

A morphological process is a word transformation that happens as a regular language transformation. There are tree
main morphological processes in English:

1. inflection,
2. derivation, and
3. compounding.

1. Inflection: is a transformation that transforms a word from one lexical class into another related word in the same
class. The transformation is performed by adding or changing a suffix or prefix. It is highly regular transformation.
Some inflection examples are: dog→ dogs, work→ works, work→ working, and work→ worked.

We will discuss more the concept of lexical class or part of speech class later, but for now you are probably familiar
with the following lexical classes (or types of words): nouns, verbs, adjectives, adverbs, and maybe some other.

Inflection is so regular transformation that usually we do not find inflected variations of a word in a dictionary.
It is assumed that a reader of the dictionary will be able to derive these variations by herself. Similarly, we can
frequently program inflection in a computer application rather than storing different variations of the word.

2. Derivation: is a transformation that transforms a word from one lexical class into a related word in a different
class. Similarly to inflection, it is performed by adding or changing a suffix or prefix. There is also some regularity,
but it is less regular than inflection. For example, a derivation is wide (adjective)→ widely (adverb), but a similar
transformation old→ oldly is not valid. Some other examples are: accept (verb)→ acceptable (adjective), acceptable
(adjective)→ acceptably (adverb), and teach (verb)→ teacher (noun).

There are exceptions where a derivation is used to transform a word in a lexical class to another word in the same
class but it is a significantly a different word. For example, the transformation of the adjective red to redish is
considered a derivation, rather than an inflection.

September 23, 2024, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 6 p.2 CSCI 4152/6509

Since derivation is not as regular transformation as inflection, derived variations of a word are usually stored in a
dictionary, and in a computer application we may want to store them in a lexicon, i.e., a word database, in many
cases.

Below you can find a table with some more derivation examples:

Derivation type Suffix Example
noun-to-verb -fy glory → glorify

noun-to-adjective -al tide → tidal
verb-to-noun (agent) -er teach → teacher

verb-to-noun (abstract) -ance delivery → deliverance
verb-to-adjective -able accept → acceptable
adjective-to-noun -ness slow → slowness
adjective-to-verb -ise modern → modernise (Brit.)
adjective-to-verb -ize modern → modernize (U.S.)

adjective-to-adjective -ish red → reddish
adjective-to-adverb -ly wide → widely

3. Compounding: is a transformation where two or more words are combined, usually by concatenation, to create
a new word. Some examples are: news + group→ newsgroup, down + market→ downmarket, over + take→
overtake, play + ground→ playground, and lady + bug→ ladybug.

7 Characters, Words, and N-grams
Slide notes:

Characters, Words, N-grams
– We saw some experiments with counting characters
– Let us look at Counting Words
– N-grams and Counting N-grams

7.1 Counting Words and Zipf’s Law

– We looked at code for counting letters, words, and
sentences

– We can look again at counting words; e.g., in “Tom
Sawyer”:

– We can observe: Zipf’s law (1929): r × f ≈ const.

Word Freq (f) Rank (r)
the 3331 1
and 2971 2
a 1776 3
to 1725 4
of 1440 5

was 1161 6
it 1030 7
I 1016 8

that 959 9
he 924 10
in 906 11
’s 834 12

you 780 13
his 772 14

Tom 763 15
’t 654 16
...

...

CSCI 4152/6509 Lecture 6 p.3

One of the basic tasks that we can do using stream-oriented processing of language is to collect statistical values
on letters, words, sentences, or similar tokens. We saw previously the code for finding frequency of different letters,
and these data can be useful for example for computer identification of a natural language. We can do similar
counting but this time of word frequencies. The table above shows the frequencies of words in the novel “Tom
Sawyer” by Mark Twain.

Zipf’s law is an observation that the product of rank and frequency of the words in a text is “quite constant,” if we
can use that term. For example, we can test this “law” on the words in the “Tom Sawyer” novel using the following
code:

Counting Words

#!/usr/bin/perl
word-frequency.pl

while (<>) {
while (/’?[a-zA-Z]+/g) { $f{$&}++; $tot++; }

}

print "rank f f(norm) word r*f\n".
(’-’x35)."\n";

for (sort { $f{$b} <=> $f{$a} } keys %f) {
print sprintf("%3d. %4d %lf %-8s %5d\n",

++$rank, $f{$_}, $f{$_}/$tot, $_,
$rank*$f{$_});

}

Program Output (Zipf’s Law)

rank f word r*f 18. 516 for 9288
---------- ----------------- 19. 511 had 9709

1. 3331 the 3331 20. 460 they 9200
2. 2971 and 5942 21. 425 him 8925
3. 1776 a 5328 22. 411 but 9042
4. 1725 to 6900 23. 371 on 8533
5. 1440 of 7200 24. 370 The 8880
6. 1161 was 6966 25. 369 as 9225
7. 1130 it 7910 26. 352 said 9152
8. 1016 I 8128 27. 325 He 8775
9. 959 that 8631 28. 322 at 9016
10. 924 he 9240 29. 313 she 9077
11. 906 in 9966 30. 303 up 9090
12. 834 ’s 10008 31. 297 so 9207
13. 780 you 10140 32. 294 be 9408
14. 772 his 10808 33. 286 all 9438
15. 763 Tom 11445 34. 278 her 9452
16. 654 ’t 10464 35. 276 out 9660
17. 642 with 10914 36. 275 not 9900

We can present this data in a graphical form and compare it with the function f = 10000/r to demonstrate the

Lecture 6 p.4 CSCI 4152/6509

Zipf’s law:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

fr
e
q

u
e
n
cy

rank

Tom Sawyer
10000/rank

If we apply a logarithm on both sides of the Zipf’s formula we get the formula log r + log f ≈ const., which
means that the Zipf’s law implies that the rank-frequency graph using log scales of x and y axis should be close to a
straight line, descending under an angle of 45 degrees. The following graph illustrates this:

 1

 10

 100

 1000

 1 10 100 1000

fr
e
q
u
e
n
cy

rank

Tom Sawyer
10000/rank

7.2 Counting N-grams
Given a sequence of tokens T = (t1, t2, t3, . . . , tk) an n-gram is an arbitrary subsequence of n such tokens, such as
(t1, t2, . . . , tn), or (t2, t3, . . . , tn+1), and so on. Given a textual document, it could be broken into a list of character
or list of words, if we assume that a character is a token, or that a word is a token. In those cases, we look at
character n-grams or word n-grams, respectively. We typically want to collect all n-grams from a text, and a way to
visualize this is to imagine a sliding window over the text.

CSCI 4152/6509 Lecture 6 p.5

Character N-grams

– Consider the text:
The Adventures of Tom Sawyer

– Character n-grams = substring of length n
– n = 1⇒ unigrams: T, h, e, _ (space), A, d, v, . . .
– n = 2⇒ bigrams: Th, he, e_, _A, Ad, dv, ve, . . .
– n = 3⇒ trigrams: The, he_, e_A, _Ad, Adv, dve, . . .
– and so on; Similarly, we can have word n-grams, such as (n = 3): The Adventures of, Adventures of Tom,
of Tom Sawyer . . .

– or normalized into lowercase

For example, if we take another look at the Tom Sawyer novel:

The Adventures of Tom Sawyer

by

Mark Twain (Samuel Langhorne Clemens)

Preface
MOST of the adventures recorded in this book really occurred; one or two
were experiences of my own, the rest those of boys who were schoolmates
of mine. Huck Finn is drawn from life; Tom Sawyer also, but not from an
individual -- he is a combination of the characteristics of three boys
whom I knew, and therefore belongs to the composite order of
architecture.

The odd superstitions touched upon were all prevalent among children and
slaves in the West at the period of this story -- that is to say, thirty
or forty years ago.

Although my book is intended mainly for the entertainment of boys and
girls, I hope it will not be shunned by men and women on that account,
for part of my plan has been to try to pleasantly remind adults of what
they once were themselves, and of how they felt and thought and talked,
and what queer enterprises they sometimes engaged in.
...

Word and Character N-grams (n = 3)

Word tri-grams Character tri-grams
------------------- -------------------
the adventures of T h e _ o f
adventures of tom h e _ o f _
of tom sawyer e _ A f _ T
tom sawyer by _ A d _ T o
sawyer by mark A d v T o m
by mark twain d v e o m _
mark twain samuel v e n m _ S
twain samuel langhorne e n t _ S a
samuel langhorne clemens n t u S a w
langhorne clemens preface t u r a w y
clemens preface most u r e w y e

Lecture 6 p.6 CSCI 4152/6509

preface most of r e s y e r
most of the e s _ e r _
... s _ o ...

A Program to Extract Word N-grams

The following Perl program word-ngrams.pl lists all word ngrams extracted from the standard input. We set
variable $n to 3 as we want word 3-grams to be extracted. The first while-loop reads input line by line, and in the
second while-loop we match string that we assume would be words. We choose any sequence of letters to be a word,
and possibly starting with an apostrophe (’). As we will see later, this will recognize usual words, but it will also
break complex words like I’m, you’re, or man’s into words I and ’m, you and ’re, and man and ’s.

#!/usr/bin/perl
word-ngrams.pl

$n = 3;

while (<>) {
while (/’?[a-zA-Z]+/g) {

push @ng, lc($&); shift @ng if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;

}
}

Output of: ./word-ngrams.pl TomSawyer.txt
the adventures of
adventures of tom
...

Some Perl List Operators

– push @a, 1, 2, 3; — adding elements at the end
– pop @a; — removing elements from the end
– shift @a; — removing elements from the start
– unshift @a, 1, 2, 3; — adding elements at the start
– scalar(@a) — number of elements in the array
– $#a — last index of an array, by default $#a = scalar(@a) - 1
– To be more precise, this is always true: scalar(@a) == $#a - $[+ 1
– $[(by default 0) is the index of first element of an array
– Arrays are dynamic: examples: $a[5] = 1, $#a = 5, $#a = -1

Since the first element of an array @a is $a[0] and the last element is $a[$#a] the number of elements is
obviously $#a+1$. Another way to obtain the number of elements of an array is scalar(@a). The Perl function
scalar enforces a scalar context on an expression, and in a scalar context an array is interpreted just a number
representing its length.

Perl arrays are dynamic, they expand and also can shrink easily. For example, after the command ‘$a[5] = 1’
the array @a will be expanded if needed to at least six elements. The command ‘$#a = 5’ sets array @a to exactly
six elements. Similarly, ‘$#a = -1’ erases an array by reducing it to zero elements, so it is equivalent to the
command ‘@a = ();’.

Extracting Character N-grams (attempt 1)

#!/usr/bin/perl

CSCI 4152/6509 Lecture 6 p.7

char-ngrams1.pl - first attempt

$n = 3;

while (<>) {
while (/\S/g) {

push @ng, $&; shift @ng if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;

}
}

Output of: ./char-ngrams1.pl TomSawyer.txt
T h e A d v e n t
h e A d v e n t u
e A d v e n ...

Extracting Character N-grams (attempt 2)

#!/usr/bin/perl
char-ngrams2.pl - second attempt

$n = 3;

while (<>) {
while (/\S|\s+/g) {

my $token = $&;
if ($token =˜ /ˆ\s+$/) { $token = ’_’ }
push @ng, $token;
shift @ng if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;

}
}

Output of: ./char-ngrams2.pl TomSawyer.txt
_ T h f _ T _ _ _
T h e _ T o _ _ M
h e _ T o m _ M a
e _ A o m _ ...
_ A d m _ S This may be what we want, but
A d v _ S a probably not.
d v e S a w
v e n a w y
e n t w y e
n t u y e r
t u r e r _
u r e r _ _
r e s _ _ _
e s _ _ _ b
s _ o _ b y
_ o f b y _
o f _ y _ _

Lecture 6 p.8 CSCI 4152/6509

This output may be what we want, but probably not. Since we already reduced repeated whitespace characters to
one underscore (‘_’), we probably want to treat the new line in the same way.

An easy way to solve the problem is to treat the whole file as one line:

Extracting Character N-grams (attempt 3)

#!/usr/bin/perl
char-ngrams3.pl - third attempt

$n = 3;
$_ = join(’’,<>); # notice how <> behaves differently

in an array context, vs. scalar context

while (/\S|\s+/g) {
my $token = $&;
if ($token =˜ /ˆ\s+$/) { $token = ’_’ }
push @ng, $token;
shift @ng if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;

}

Output of: ./char-ngrams3.pl TomSawyer.txt
_ T h f _ T a r k
T h e _ T o r k _
h e _ T o m k _ T
e _ A o m _ _ T w
_ A d m _ S T w a
A d v _ S a w a i
d v e S a w a i n
v e n a w y i n _
e n t w y e n _ (
n t u y e r _ (S
t u r e r _ (S a
u r e r _ b S a m
r e s _ b y a m u
e s _ b y _ m u e
s _ o y _ M u e l
_ o f _ M a e l _
o f _ M a r ...

These days computers have very large working memories (RAM, or Random Access Memories), so reading a
whole file in memory as in the above example is normally not a problem. If we want to avoid reading the whole file
into memory and still recognize multi-line whitespace as one space character, it can be done but we will leave it for
reader as an exercise. One approach would be to write a function next_char that keeps the current line and on
each call reads the next character and returns it. When encoutering a whitespace character, it would read as many
lines as needed until a non-whitespace character is found, and it would return a space.

Extracting Character N-grams by Line

– We need to handle whitespace spanning multiple line
– Generally, any token may span multiple lines
– Could be done but leads to a bit more complex code

CSCI 4152/6509 Lecture 6 p.9

If the files are very large, we may not want to read the whole file in memory and still want to handle multi-line
whitespace. This problem may happen in general if any tokens that are part of n-grams span multiple lines. Again,
the issue can handled in a brief way if we allow reading the whole file. We want to read the file line by line, without
accumulating too many lines at a time, we would need to identify when a token may be spanning multiple lines and
only then read lines ahead.

Word N-gram Frequencies

#!/usr/bin/perl
word-ngrams-f.pl

$n = 3;

while (<>) {
while (/’?[a-zA-Z]+/g) {

push @ng, lc($&); shift @ng if scalar(@ng) > $n;
&collect(@ng) if scalar(@ng) == $n;

}
}

sub collect {
my $ng = "@_";
$f{$ng}++; ++$tot;

}

print "Total $n-grams: $tot\n";

for (sort { $f{$b} <=> $f{$a} } keys %f) {
print sprintf("%5d %lf %s\n",

$f{$_}, $f{$_}/$tot, $_);
}

Output of: ./word-ngrams-f.pl TomSawyer.txt
Total 3-grams: 73522
70 0.000952 i don ’t
44 0.000598 there was a
35 0.000476 don ’t you
32 0.000435 by and by
25 0.000340 there was no
25 0.000340 don ’t know
24 0.000326 it ain ’t
22 0.000299 out of the
22 0.000299 i won ’t
21 0.000286 it ’s a
21 0.000286 i didn ’t
21 0.000286 i can ’t
20 0.000272 it was a
19 0.000258 and i ’ll
18 0.000245 injun joe ’s
18 0.000245 you don ’t
17 0.000231 i ain ’t
17 0.000231 he did not
16 0.000218 he had been

Lecture 6 p.10 CSCI 4152/6509

15 0.000204 out of his
15 0.000204 all the time
15 0.000204 it ’s all
15 0.000204 to be a
15 0.000204 what ’s the
14 0.000190 that ’s so
#...

Character N-gram Frequencies

#!/usr/bin/perl
char-ngrams-f.pl

$n = 3;
$_ = join(’’,<>); # notice how <> behaves differently

in an array context, vs. scalar context

while (/\S|\s+/g) {
my $token = $&;
if ($token =˜ /ˆ\s+$/) { $token = ’_’ }
push @ng, $token;
shift @ng if scalar(@ng) > $n;
&collect(@ng) if scalar(@ng) == $n;

}

sub collect {
my $ng = "@_";
$f{$ng}++; ++$tot;

}

print "Total $n-grams: $tot\n";

for (sort { $f{$b} <=> $f{$a} } keys %f) {
print sprintf("%5d %lf %s\n",

$f{$_}, $f{$_}/$tot, $_);
}

Output of: ./char-ngrams-f.pl TomSawyer.txt
Total 3-grams: 389942
6556 0.016813 _ t h
5110 0.013105 t h e
4942 0.012674 h e _
3619 0.009281 n d _

3495 0.008963 _ a n
3309 0.008486 a n d
2747 0.007045 e d _
2209 0.005665 _ t o
2169 0.005562 i n g
1823 0.004675 t o _
1817 0.004660 n g _
1738 0.004457 _ a _
1682 0.004313 _ w a

CSCI 4152/6509 Lecture 6 p.11

1673 0.004290 _ h e
1672 0.004288 e r _
1592 0.004083 d _ t
1566 0.004016 _ o f
1541 0.003952 a s _
1526 0.003913 _ ‘ ‘
1511 0.003875 ’ ’ _
1485 0.003808 a t _
...

7.3 Using Ngrams Module
This section is covered in the lab, but you can also read here about the basic use of the Ngrams module.

We will now discuss how different kinds of n-grams can be collected using a Perl module named Text::Ngrams. A
program associate with this module is named ngrams.pl, and both files, Ngrams.pm and ngrams.pl, can be
found in the directory ˜prof6509/public on bluenose. They can also be found on the course website under the
tab ‘Misc’. If you use the web-site, for technical reasons the file ngrams.pl was renamed to ngrams-pl.txt
and if you download it, you will need to rename it back to ngrams.pl.

The module and the program are open-source code, and can be found in the CPAN archive. The newest version
is available on bluenose. The modules are typically installed system-wide and the Perl is configured in such way
that it can easily find them. Since you do not have administrative permissions on bluenose, we need to use a way to
use the module locally. The Perl modules can be installed on a per-user basis, either in a more systematic way or in
more ad-hoc way. We will use here a local ad-hoc installation. You will cover the steps of installing the module in
more details in the lab, but for now, we will assume that you are in a convenient sub-directory of your your home
directory on bluenose. You would first copy the appropriate files using the commands:

cp ˜prof6509/public/ngrams.pl .
cp ˜prof6509/public/Ngrams.pm .

These files may actually be installed system-wide on bluenose, but to be sure to use the local version, we will do a
couple additional operations and checks. First, create a subdirectory Text and copy the module there:

mkdir Text
cp Ngrams.pm Text

Check Local ngrams.pl

• Use command: more ngrams.pl

Let us take a look at the version of ngrams.pl that we use here. (This version is slightly different from the
version in the CPAN archive.) We can use the command ‘more ngrams.pl and the beginning of the file should
look as follows:

#!/usr/bin/perl -w

use strict;
use vars qw($VERSION);
$VERSION = 2.005;
$Revision: 1.26 $

use lib ’.’;

use Text::Ngrams;

Lecture 6 p.12 CSCI 4152/6509

use Getopt::Long;
...

The line ‘use lib ’.’;’ is important, since it directs Perl to give priority in finding the module in the cur-
rent directory, rather than some other versions that may be available in the system. You can test the program
ngrams.pl but typing:

./ngrams.pl

then typing some input, and pressing ‘C-d’; i.e., Control-D combination of keyboard keys. For example, if you
type input:

natural language processing

you should get the output:

BEGIN OUTPUT BY Text::Ngrams version 2.005

1-GRAMS (total count: 28)
FIRST N-GRAM: N
LAST N-GRAM: _

_ 3
A 4
C 1
E 2
G 3
I 1
L 2
N 3
O 1
P 1
R 2
S 2
T 1
U 2

2-GRAMS (total count: 27)
FIRST N-GRAM: N A
LAST N-GRAM: G _

_ L 1
_ P 1
A G 1
A L 1
A N 1
A T 1
C E 1
E _ 1
E S 1
G _ 1
G E 1
G U 1

CSCI 4152/6509 Lecture 6 p.13

I N 1
L _ 1
L A 1
N A 1
N G 2
O C 1
P R 1
R A 1
R O 1
S I 1
S S 1
T U 1
U A 1
U R 1

3-GRAMS (total count: 26)
FIRST N-GRAM: N A T
LAST N-GRAM: N G _

_ L A 1
_ P R 1
A G E 1
A L _ 1
A N G 1
A T U 1
C E S 1
E _ P 1
E S S 1
G E _ 1
G U A 1
I N G 1
L _ L 1
L A N 1
N A T 1
N G _ 1
N G U 1
O C E 1
P R O 1
R A L 1
R O C 1
S I N 1
S S I 1
T U R 1
U A G 1
U R A 1

END OUTPUT BY Text::Ngrams

This are the character n-grams of up to the size 3 of the given text, with their counts.

Lecture 6 p.14 CSCI 4152/6509

Verifying Version of Ngrams.pm

To test that the program is using the correct version of the module Ngrams.pmwe can edit the file Text/Ngrams.pm
and temporarily insert a ‘die’ command at the beginning of the module. The beginning of the module should look
as follows:

(c) 2003-2014 Vlado Keselj http://web.cs.dal.ca/˜vlado
#
Text::Ngrams - A Perl module for N-grams processing

die;

package Text::Ngrams;

use strict;
require Exporter;
use Carp;
...

• If we run ngrams.pl it should report error
• Delete ‘die;’ command from the Ngrams.pm file

It is important to note that this is the copy of the module in the subdirectory Text. After this small test, do not
forget to remove again the line ‘die;’.

8 Elements of Information Retrieval and Text Mining
In the previous sections, we looked at some methods for processing text in a stream mode. Many language processing
tasks can be solved in this way, by using mainly regular expressions, extracting some pieces of text, and collecting
basic statistics. We will now look at some techniques for working with the documents as whole units withing
large collections. First we will look at the task of Information Retrieval, and then the area of Text Mining, with a
particular emphasis on Text Classification and brief mentioning of Text Clustering.

The term Text Mining was coined at about the same time as Data Mining, and it consists of methods for a
coarse-grained management of text documents, such as classification and clustering; but also some finer-grained
mining of information, such as in information extraction.

8.1 Elements of Information Retrieval
– Reading: [JM] Sec 23.1, ([MS] Ch.15)

Information Retrieval is an area of Computer Science mainly concerned with the task of finding a set of relevant
documents from a document collection given a user query. A search engine, such as Google, is a information
retrieval system.

Basic Information Retrieval problem definition: The basic definition of the problem or task of Information
Retrieval is also called ad hoc retrieval and is given as follows: We are given a set of documents called a document
collection, where each document is a natural language text. A user has an information need which she or he will
need to express as a query, which is a short text, possibly in natural language or some more specialized format.
The task of an Information Retrieval system is to return a subset of documents from the document collection that
are relevant to the user query. The relevant documents should also be sorted by relevancy, starting from the most
relevant document; i.e., a ranked list of documents.

CSCI 4152/6509 Lecture 6 p.15

Typical IR System Architecture

Query

Document Collection

Ranked Documents

Indexing

SearchQuery Processing

User information need

Steps in Document and Query Processing

– a “bag-of-words” model
– stop-word removal
– rare word removal (optional)
– stemming
– optional query expansion
– document indexing
– document and query representation;

e.g. sets (Boolean model), vectors

The document semantics is reduced to the set of stems of content-bearing words.

8.2 Vector Space Model

Vector Space Model in IR

– We choose a global set of terms {t1, t2, . . . , tm}
– Documents and queries are represented as vectors of weights:

~d = (w1,d, w2,d, . . . , wm,d) ~q = (w1,q, w2,q, . . . , wm,q)

where weights correspond to respective terms
– What are weights? Could be binary (1 or 0), term frequency, etc.
– A standard choice is: tfidf — term frequency inverse document frequency weights

tfidf = tf · log
(
N

df

)
– tf is frequency (count) of a term in document, which is sometimes log-ed as well
– df is document frequency, i.e., number of documents in the collection containing the term

After preprocessing steps, such as stop-word removal, rare words removal, and stemming, we have a global set of
terms {t1, t2, . . . , tm}, which are used to represent documents and queries.

In a vector space model, document and queries are represented by vectors of weights, such as

~d = (w1,d, w2,d, . . . , wm,d), and ~q = (w1,q, w2,q, . . . , wm,q)

where the weights wi,x correspond to the term ti, of the document or query x. There are different ways how weights
can be determined. One simple way is to use binary weights: 1 if the document contains the term, or 0 if it does not.
Another option is to use term counts, or frequency within the document or query. The most widely adopted standard

Lecture 6 p.16 CSCI 4152/6509

choice is to use term frequency inverse document frequency weights (tfidf), which are calculated using the following
formula:

tfidf = tf · log
(
N

df

)
where tf is frequency (count) of a term in document, which is sometimes log-ed as well; df is document frequency,
i.e., number of documents in the collection containing the term; and N is the total number of documents in the
collection. The document frequency df is the number of documents that contain the term t. We could also calculate
it as the portion of the document collection that contain the term; i.e., the fraction of documents that contain the
term, which would be df /N . A term should be more important and have a higher weight if it is more rare, so that
is the reason why we use the inverse document frequency, or N/df . For very rare terms this number could be
very large, for example the terms with df = 1 and N = 1000 000 it would be 1 000 000, so to “curb” this growth
we apply the slow-growing logarithm function and finally obtain tfidf = tf · log(N/df). In some references, the
logarithm is applied to tf as well.

8.3 Cosine Similarity Measure
A natural measure to measure similarity between a document and a query is the cosine similarity measure. It is
known that the cosine of the angle between two vectors can be easily computed using the following formula:

sim(q, d) =

∑m
i=1 wi,qwi,d√∑m

i=1 w
2
i,q ·

√∑m
i=1 w

2
i,d

=
~q · ~d
|~q| · |~d|

The formula gives the cosine of the angle between vectors in 2-dimensional and 3-dimensional space, and although
we cannot exactly image the angle in spaces in more dimensions it still preserve some nice properties that match our
intuition about similarity between documents, or between a document and a query. For example, if a document and
query have exactly the same terms and in exactly the same proportion of their frequencies, the angle will be 0, and
the cosine will be 1. On the other hand, if and only if the query and the document have no terms in common, the
angle will be 90◦, and the cosine will be 0.

The angle between a query and a document vector in the 3-dimensional space is shown in the Figure 1.

α
q

d cos = sim(d,q)α

x

y

z

Figure 1: Cosine Similarity in the 3-dimensional Space

If the vectors representing documents (~d) and queries (~q) are normalized in advance, i.e., if they are divided with
their length, then the cosine similarity computation becomes simpler and more efficient. Namely, if the normalized
vectors are precomputed

~d0 =
~d

|~d|
=

 w1,d√∑m
i=1 w

2
i,d

,
w2,d√∑m
i=1 w

2
i,d

, . . .
wm,d√∑m
i=1 w

2
i,d

CSCI 4152/6509 Lecture 6 p.17

and

~q0 =
~q

|~q|
=

 w1,q√∑m
i=1 w

2
i,q

,
w2,q√∑m
i=1 w

2
i,q

, . . .
wm,q√∑m
i=1 w

2
i,q

then the similarity value is simply computed as

sim(q, d) = ~q0 · ~d0 =

m∑
i=1

wiq0wid0

	Morphological Processes
	Characters, Words, and N-grams
	Counting Words and Zipf's Law
	Counting N-grams
	Using Ngrams Module

	Elements of Information Retrieval and Text Mining
	Elements of Information Retrieval
	Vector Space Model
	Cosine Similarity Measure
	Term-by-Document Matrix and Latent Semantic Analysis
	IR Evaluation Measures: Precision, Recall, and F-measure
	Recall-Precision Curve

	Text Classification as General NLP Task
	Text Classification as a Text Mining Task
	Types of Text Classification
	Evaluation Measures for Text Classification
	Evaluating Classifiers
	Underfitting and Overfitting
	Evaluation Methods for Text Classifiers

	Text Clustering

	Similarity-based Text Classification
	Similarity-based Classification using Vector Space Model
	Common N-Grams Method for Text Classification (CNG)

