Natural Language Processing
CSCI 4152/6509 — Lecture 6
Counting N-grams

Instructors: Vlado Keselj
Time and date: 16:05 — 17:25, 23-Sep-2024
Location: Carleton Tupper Building Theatre C

CSCl 4152/6509, Vlado Keselj

1/ 40

Previous Lecture

@ Regular expressions in Perl

» Use of special variables
» Backreferences, shortest match
@ Text processing examples

» tokenization
» counting letters

e Elements of Morphology

CSCl 4152/6509, Vlado Keselj Lecture 6 2 /40

Lemmatization

@ Surface word form: a word as it appears in text (e.g.,
working, are, indices)

@ Lemma: a canonical or normalized form of a word, as
it appears in a dictionary (e.g., work, be, index)

@ Lemmatization: word processing method which maps
surface word forms into their lemmas

CSCl 4152/6509, Vlado Keselj Lecture 6 3 /40

Morphological Processes

@ Morphological Process = changing word form, as a
part of regular language transformation
@ Types of morphological processes

@ inflection
© derivation
© compounding

CSCl 4152/6509, Vlado Keselj Lecture 6 4 /40

1. Inflection

Examples: dog — dogs
work — works

working

worked

@ small change (word remains in the same category)

o relatively regular
@ using suffixes and prefixes

CSCl 4152/6509, Vlado Keselj Lecture 6 5/ 40

2. Derivation

Typically transforms word in one lexical class to a
related word in another class

Example: wide (adjective) — widely (adverb)
but, similarly: old — oldly (*) is incorrect.

more ex.: accept (verb) — acceptable (adjective)
acceptable (adjective) — acceptably (adverb)
teach (verb) — teacher (noun)

Derivation is a more radical change (change word
class)

less systematic

using suffixes

CSCl 4152/6509, Vlado Keselj Lecture 6

6/ 40

Some Derivation Examples

Derivation type Suffix Example
noun-to-verb -fy glory — glorify
noun-to-adjective -al tide — tidal
verb-to-noun (agent) | -er teach — teacher
verb-to-noun (abstract) | -ance | delivery — deliverance
verb-to-adjective -able | accept — acceptable
adjective-to-noun -ness slow — slowness
adjective-to-verb -ise | modern — modernise (Brit.)
adjective-to-verb -ize. | modern — modernize (U.S.)
adjective-to-adjective | -ish red — reddish
adjective-to-adverb -ly wide — widely

CSCl 4152/6509, Vlado Keselj Lecture 6

7/40

3. Compounding

Examples: news + group = newsgroup
down + market = downmarket
over + take = overtake
play + ground = playground
lady + bug = ladybug

CSCl 4152/6509, Vlado Keselj Lecture 6 8 /40

Characters, Words, N-grams

@ We saw some experiments with counting characters
@ Let us look at Counting Words

@ N-grams and Counting N-grams

CSCl 4152/6509, Vlado Keselj Lecture 6 9 /40

Counting Words and Zipf's Law

Word Freq (f) Rank (r)
the 3331 1
and 2971 2
a 1776 3
@ We |o.oked at code for to 1725 4
counting letters, words, and of 1440 5
sentences was 1161 6
it 1030 7
@ We can look again at | 1016 8
counting words; e.g., in that 959 9
“Tom Sawyer”: he 924 10
in 906 11
@ We can observe: Zipf's law 's 834 12
(1929): r x f = const. you 780 13
his 772 14
Tom 763 15
't 16

CSCl 4152/6509, Vlado Keselj Lecture 6

654

10 / 40

Counting Words

#!/usr/bin/perl
word-frequency.pl

while (<>) {
while (/’7[a-zA-Z]1+/g) { $£{$&}++; $tot++;
}

print "rank f f(norm) word rxf\n".
(;_;X35) X n\nn ;
for (sort { $£f{$b} <=> $f{$a} } keys %f) {
print sprintf("%3d. %4d %1f %-8s %5d\n",
++$rank, $£{$_}, $£{$_}/$tot, $_,
$rank*$£{$_3});

CSCl 4152/6509, Vlado Keselj Lecture 6 11 / 40

Program Output (Zipf's Law)

rank £ word
1. 3331 the
2. 2971 and
3. 1776 a
4. 1725 to
5. 1440 of
6. 1161 was
7. 1130 it
8. 1016 I
9. 959 that
10 924 he
11 906 in
12 834 ’s
13. 780 you
14 772 his
15 763 Tom
16 654 't

17. 642 with

r*xf

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

516
511
460
425
411
371
370
369
352
325
322
313
303
297
294
286
278
276
275

for
had

they
him
but
on
The
as
said
He
at
she
up
so
be
all
her
out
not

CSCl 4152/6509, Vlado Keselj Lecture 6

9288
9709
9200
8925
9042
85633
8880
9225
9152
8775
9016
9077
9090
9207
9408
9438
9452
9660
9900

12 / 40

Graphical Representation of Zipf's Law

3500 | |
3000
2500

2000

frequency

1500

1000

500

T
Tom Sawyer
10000/rank

0 50 100
rank

CSCI 4152/6509, Vlado Keselj Lecture 6

150

200

13 / 40

Zipf's Law (log-log scale)

il T T T T
Tom Sawyer
R 10000/rank -
1000 E
9
¢ 100 ¢ E
[E
>
o
o
Y
10 4
1 | il L |
1 10 100 1000
rank
o = = = = 9ac

CSCl 4152/6509, Vlado Keselj Lecture 6

Character N-grams

@ Consider the text:
The Adventures of Tom Sawyer

@ Character n-grams = substring of length n

@ n=1= unigrams: T, h, e, _ (space), A, 4, v, ...

_, _A, Ad, dv, ve, ...

@ n =2 = bigrams: Th, he, e
@ n =3 = trigrams: The, he_, e_A, _Ad, Adv, dve, ...

@ and so on; Similarly, we can have word n-grams, such as
(n = 3): The Adventures of, Adventures of Tom, of Tom
Sawyer ...

@ or normalized into lowercase

CSCl 4152/6509, Vlado Keselj Lecture 6 15 / 40

Experiments on “Tom Sawyer”

e Consider the Tom Sawyer novel:

The Adventures of Tom Sawyer

by
Mark Twain (Samuel Langhorne Clemens)

Preface

MOST of the adventures recorded in this book really occurred;
one or two were experiences of my own, the rest those of boys
who were schoolmates of mine. Huck Finn is drawn from life;
Tom Sawyer also, but not from an individual -- he is a

CSCl 4152/6509, Vlado Keselj Lecture 6 16 / 40

Word and Character N-grams (n = 3)

Word tri-grams

the adventures of
adventures of tom

of tom sawyer

tom sawyer by

sawyer by mark

by mark twain

mark twain samuel

twain samuel langhorne
samuel langhorne clemens
langhorne clemens preface
clemens preface most
preface most of

most of the

Character tri-grams

(O =

O H g B 0 < Q=

0

n o R & B 0 < Q=

n o R & B 0 < Q=

(0]

H O |

B o A1

0O < =5 o I

CSCl 4152/6509, Vlado Keselj Lecture 6

8B o 11

H 0o< =5 p I

H o< 5 121 B O A1

17 / 40

A Program to Extract Word N-grams

#!/usr/bin/perl
word-ngrams.pl

$n = 3;

while (<>) {
while (/’7[a-zA-Z]+/g) {
push @ng, 1c($&); shift Ong if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;
}
}

Output of: ./word-ngrams.pl TomSawyer.txt
the adventures of

adventures of tom

...

CSCl 4152/6509, Vlado Keselj Lecture 6 18 / 40

Some Perl List Operators

push @a, 1, 2, 3; — adding elements at the end

pop @a; — removing elements from the end

shift @a; — removing elements from the start

unshift @a, 1, 2, 3; — adding elements at the start

scalar (@) — number of elements in the array

$#a — last index of an array, by default $#a = scalar(@a) - 1

To be more precise, this is always true: scalar(@a) == $#a - $[+ 1

$ [(by default 0) is the index of first element of an array

Arrays are dynamic: examples: $a[5] = 1, $#a = 5, $#a = -1

CSCl 4152/6509, Vlado Keselj Lecture 6 19 / 40

Extracting Character N-grams (attempt 1)

#!/usr/bin/perl
char-ngramsl.pl - first attempt

$n = 3;

while (<>) {
while (/\S/g) {
push @ng, $&; shift Ong if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;
}
}

Output of: ./char-ngramsl.pl TomSawyer.txt
#The Adv ent

#helA dve ntu

#eAd ven

CSCl 4152/6509, Vlado Keselj Lecture 6 20 / 40

Extracting Character N-grams (attempt 2)

#!/usr/bin/perl
char-ngrams2.pl - second attempt

$n = 3;

while (<>) {
while (/\S|\s+/g) {
my $token = $&;
if ($token =~ /~\s+$/) { $token = ’_’ }
push @ng, $token;
shift @ng if scalar(@ng) > $n;
print "@ng\n" if scalar(@ng) == $n;

CSCl 4152/6509, Vlado Keselj Lecture 6 21 / 40

Output of:
_Th £
#The _
he _ T
#e _ A o
_Ad m
#Adv _
#dve S
#ven a
#ent w
#ntu vy
#tur e
#ure r
#res _
#es _ _
#s _o _
_of b
#of _ y

H o< £ I B o0 A1

< o

./char-ngrams2.pl TomSawyer.txt

T ___

o _ _M

m _Ma

S This may be what we want, but
a probably not.
W

y

e

r

b

y

CSCl 4152/6509, Vlado Keselj Lecture 6

22 / 40

Extracting Character N-grams (attempt 3)

#!/usr/bin/perl
char-ngrams3.pl - third attempt

$n = 3;
$_ = join(’’,<>); # notice how <> behaves differently
in an array context, vs. scalar context

while (/\S|\s+/g) {
my $token = $&;
if ($token =~ /"\s+$/) { $token = >_’ }
push @ng, $token;
shift @ng if scalar(Gng) > $n;
print "@ng\n" if scalar(@ng) == $n;

CSCl 4152/6509, Vlado Keselj Lecture 6 23 / 40

CSCl 4152/6509, Vlado Keselj Lecture 6

Output of:
_Th £
#The _
he _ T
#e _ A o
_Ad m
#Adv _
#dve S
#ven a
#ent w
#ntu vy
#tur e
#ure r
#res _
#es _ b
#s_o0o ¥y
_of _
o0 f M

H o< £ 21 B o A1

PRI <9 T
R p =

T

R o< £ p 21 B O

< o

a
r

~

B H o = A1

O s B p I

r
k

B H o =5 A1

H o e B A~

./char-ngrams3.pl TomSawyer.txt

k

B R s A

H o & B p 2 ~|

24 / 40

Extracting Character N-grams by Line

e We need to handle whitespace spanning
multiple line

o Generally, any token may span multiple lines

e Could be done but leads to a bit more

complex code

CSCl 4152/6509, Vlado Keselj ecture 25 / 40

Word N-gram Frequencies

#!/usr/bin/perl
word-ngrams-f.pl

$n = 3;

while (<>) {
while (/’7[a-zA-Z]+/g) {
push Ong, 1c($&); shift @ng if scalar(@ng) > $n;
&collect(@ng) if scalar(@ng) == $n;
+
}

sub collect {
my $ng = n@_n;
$£{$ng}++; ++$tot;
+

CSCl 4152/6509, Vlado Keselj Lecture 6 26 / 40

print "Total $n-grams: $tot\n";

for (sort { $£f{$b} <=> $f{$a} } keys %f) {
print sprintf("%5d %1f %s\n",
$£{$_}, $£{$_}/$tot, $_);

}

Output of: ./word-ngrams-f.pl TomSawyer.txt
Total 3-grams: 73522

70 0.000952 i don ’t

44 0.000598 there was a

35 0.000476 don ’t you

32 0.000435 by and by

25 0.000340 there was no

25 0.000340 don ’t know

24 0.000326 it ain ’t

CSCl 4152/6509, Vlado Keselj Lecture 6 27 / 40

22
22
21
21
21
20
19
18
18
17
17
16
15
15
15
15
15
14

H OH H HHHEHHHHHEHHEHHHEHHER

CSCl 4152/6509, Vlado Keselj Lecture 6

O OO OO OO OOOOOOOOoOOoOOoOOo

.000299
.000299
.000286
.000286
.000286
.000272
.000258
.000245
.000245
.000231
.000231
.000218
.000204
.000204
.000204
.000204
.000204
.000190

out of the

i won
it ’s

’t
a

i didn ’t

i can

't

it was a

and i

injun joe ’s

’11

you don ’t

i ain

't

he did not

he had been

out of his

all the time

it ’s
to be
what
that

all
a

’s the
’s so

28 / 40

Character N-gram Frequencies

#!/usr/bin/perl
char-ngrams-f.pl

$n = 3;
$_ = join(’’,<>); # notice how <> behaves differently
in an array context, vs. scalar context

while (/\S|\s+/g) {
my $token = $&;
if ($token =" /"\s+$/) { $token = ’_> }
push @ng, $token;
shift @ng if scalar(Gng) > $n;
&collect(@ng) if scalar(@ng) == $n;

CSCl 4152/6509, Vlado Keselj Lecture 6 29 / 40

sub collect {
my $ng = u@_n;

$£{$ngr++; ++$tot;

}

print "Total $n-grams: $tot\n";

for (sort { $£{$b} <=> $f{$a} } keys %f) {
print sprintf("%5d %1f %s\n",
$£{$_}, $£{$_}/%tot, $_);

Output of: ./char-ngrams-f.pl TomSawyer.txt
Total 3-grams: 389942

5110 0.013105 t
4942 0.012674 h
n

#
#
6556 0.016813
#
#
3619 0.009281

CSCl 4152/6509, Vlado Keselj Lecture 6

t

h
e
d

h
e

30 / 40

3495
3309
2747
2209
2169
1823
1817
1738
1682
1673
1672
15692
1566
1541
1526
1511
1485

H OH H H HHFHHHEHHEHHEHHHEHRH

CSCl 4152/6509, Vlado Keselj Lecture 6

O OO O OO OO O0OOO0OOOOoOOoOOoOOo

.008963
.008486
.007045
.005665
.005562
.004675
.004660
.004457
.004313
.004290
.004288
.004083
.004016
.003952
.003913
.003875
.003808

o

B oo
H b= pM0@OoODpB dalB e

[I B o PR)]
~n O |

-

ct

I B

(e]

(o]

o o |

Hoot |

31/ 40

Using Ngrams Module

o Using Perl module: Text: :Ngrams

o Flexible use for several types of n-grams, e.g.:
character, word, byte

o Use ngrams.pl or use module from a
program

e Details covered in the lab

CSCl 4152/6509, Vlado Keselj ecture 32 /40

Elements of Information Retrieval

@ Reading: [JM] Sec 23.1, ([MS] Ch.15)

@ Information Retrieval: area of Computer Science
concerned with finding a set of relevant documents
from a document collection given a user query.

@ Basic task definition (ad hoc retrieval):

» User: information need expressed as a query
» Document collection
» Result: set of relevant documents

CSCl 4152/6509, Vlado Keselj Lecture 6 33 /40

Typical IR System Architecture

Document Collection

User information need

Indexing
—
‘ Query Processing }—>‘ Search }%

Ranked Documents

09, Vlado Keselj Lecture 6 34 / 40

Steps in Document and Query Processing

a “bag-of-words” model
stop-word removal

rare word removal (optional)
stemming

optional query expansion
document indexing

document and query representation;
e.g. sets (Boolean model), vectors

CSCl 4152/6509, Vlado Keselj Lecture 6 35/ 40

Vector Space Model in IR

@ We choose a global set of terms {t1,t2,...,tm}

@ Documents and queries are represented as vectors of weights:
d= (de, Wady -y Winyd) = (wl,qv W2,q5 - - - ’wm,q)

where weights correspond to respective terms
@ What are weights? Could be binary (1 or 0), term frequency, etc.

@ A standard choice is: tfidf — term frequency inverse document frequency

weights
N
thidf = tf -1 —
s = f o (3¢)
@ ifis frequency (count) of a term in document, which is sometimes log-ed
as well

@ dfis document frequency, i.e., number of documents in the collection
containing the term

CSCl 4152/6509, Vlado Keselj Lecture 6 36 / 40

Example: Binary Weights
Consider documents:

dl: dog cat dog dog
d2: Dbook sky dog book
d3: cat cat sky cat

=} 5

CSCl 4152/6509, Vlado Keselj Lecture 6

Example: tf Weights
Consider documents:

dl: dog cat dog dog
d2: Dbook sky dog book
d3: cat cat sky cat

=} 5

CSCl 4152/6509, Vlado Keselj Lecture 6

Example: tfidf Weights
Consider documents:

dl: dog cat dog dog
d2: Dbook sky dog book
d3: cat cat sky cat

=} 5

CSCl 4152/6509, Vlado Keselj Lecture 6

Cosine Similarity Measure

sim(q, d) E =1 WirgWid _ T d_.
\/21_1“},(1 \/Zl_lw g - |d|
z
d cos o= sim(dzlf
y
U« a

X
o & = E DA
CSCl 4152/6509, Vlado Keselj Lecture 6

