
Natural Language Processing
CSCI 4152/6509 — Lecture 5
Basic NLP in Perl

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 18-Sep-2024
Location: Carleton Tupper Building Theatre C

CSCI 4152/6509, Vlado Keselj Lecture 5 1 / 30

Previous Lecture

NFA-to-DFA translation (continued)

Review of Regular Expressions

Introduction to text processing with Perl

CSCI 4152/6509, Vlado Keselj Lecture 5 2 / 30

Perl Regular Expressions: ‘proc...ing’ Example

(repeated slide)

• Similar functionality as grep:
#!/usr/bin/perl

run as: ./re-proc-ing.pl linux.words

while ($r = <>) {

if ($r =~ /proc...ing/) {

print $r;

}

}

CSCI 4152/6509, Vlado Keselj Lecture 5 3 / 30

Shorter ‘proc...ing’ Code
• There are several ways how this program can made
shorter: first, let us use the default variable ‘$_’:
while ($_ = <>) {

if ($_ =~ /proc...ing/) {

print $_;

}

}

• Shorter version:
while (<>) {

if (/proc...ing/) {

print;

}

}

CSCI 4152/6509, Vlado Keselj Lecture 5 4 / 30

Even Shorter ‘proc...ing’ Code

• and shorter:
while (<>) {

print if (/proc...ing/);

}

• and shorter:
#!/usr/bin/perl -n

print if (/proc...ing/);

• or as a one-line command:
perl -ne ’print if /proc...ing/’

CSCI 4152/6509, Vlado Keselj Lecture 5 5 / 30

More Special Character Classes

\d — any digit
\D — any non-digit
\w — any word character
\W — any non-word character
\s — any space character
\S — any non-space character

CSCI 4152/6509, Vlado Keselj Lecture 5 6 / 30

A More Complete List of Iterators

* example: \s*
+ example: \d+
? example: \d?\d
{n} example: B\d{8}
{n,m} example: \w{3,5}
{n,} example: -{5,72}
{,m} example: .{,20}

CSCI 4152/6509, Vlado Keselj Lecture 5 7 / 30

A More Complete List of Iterators

* — zero or more occurrence
+ — one or more occurrences
? — zero or one occurrence
{n} — exactly n occurrences
{n,m} — between n and m occurrences
{n,} — at least n occurrences
{,m} — at most m occurrences

CSCI 4152/6509, Vlado Keselj Lecture 5 8 / 30

Some Special Variables Assigned
After a Match in Perl

regular expression match: $var =~ /re/

$var =

$&$‘ $’

CSCI 4152/6509, Vlado Keselj Lecture 5 9 / 30

Example: Counting Simple Words

#!/usr/bin/perl

my $wc = 0;

while (<>) {

while (/\w+/) { ++$wc; $_ = $’; }

}

print "$wc\n";

CSCI 4152/6509, Vlado Keselj Lecture 5 10 / 30

Example: Counting Simple Words (2)

• Consider the following variation:

#!/usr/bin/perl

my $wc = 0;

while (<>) {

while (/\w+/g) { ++$wc }

}

print "$wc\n";

CSCI 4152/6509, Vlado Keselj Lecture 5 11 / 30

Counting Words and Sentences

#!/usr/bin/perl

simplified sentence end detection

my ($wc, $sc) = (0, 0);

while (<>) {

while (/\w+|[.!?]+/) {

my $w = $&; $_ = $’;

if ($w =~ /^[.!?]+$/) { ++$sc }

else { ++$wc }

}

}

print "Words: $wc Sentences: $sc\n";

CSCI 4152/6509, Vlado Keselj Lecture 5 12 / 30

More on Perl RegEx’es

\G anchor, end of the previous match
(?=re) look-ahead
(?!re) negative look-ahead
(?<=re) look-behind
(?<!re) negative look-behind

• Some examples:
/foo(?!.*foo)/ — finding last occurrence of ‘foo’
s/(?<=\be)(?=mail)/-/g — inserting hyphen
/\b\w+(?<!s)\b/ — a word not ending with ‘s’

CSCI 4152/6509, Vlado Keselj Lecture 5 13 / 30

An Example with \G

while (<>) {

while (1) {

if (/\G\w+/gc) { print "WORD: $&\n" }

elsif (/\G\s+/gc) { print "SPACE\n" }

elsif (/\G[.,;?!]/gc)

{ print "PUNC: $&\n" }

else { last }

}

}

• Option g must be used with \G for global matching
• Option c prevents position reset after mismatch

CSCI 4152/6509, Vlado Keselj Lecture 5 14 / 30

Back References

\1 \2 \3 . . . match parenthesized sub-expressions

for example: /(a*)b\1/ matches anban; such as b,
aba, aabaa, . . .

Sub-expressions are captured in (. . .)

Aside, in grep: \(. . . \)

(?:. . .) is grouping without capturing

CSCI 4152/6509, Vlado Keselj Lecture 5 15 / 30

Back Reference Examples
Consider examples:
/(a+(b+))(c+(d+))\4/ and /(a+(b+))(c+(d+))\3/

CSCI 4152/6509, Vlado Keselj Lecture 5 16 / 30

Shortest Match

default matching: left-most, longest match

e.g., consider /\d+/
Shortest match is sometimes preferred

I e.g., consider: /<div>.*<\/div>/ or
/<[^>]*>/ vs. /<.*>/

I and: /<div>.*?<\/div>/ and /<.*?>/

Shortest match iterators:
*? +? ?? {n}? {n,m}?

CSCI 4152/6509, Vlado Keselj Lecture 5 17 / 30

Regular Expression Substitutions

syntax: s/re/sub/options

Some substitution options
c – do not reset search position after /g fail
e – evaluate replacement as expression
g – replace globally (all occurrences)
i – case-insensitive pattern matching
m – treat string as multiple lines
o – compile pattern only once
s – treat string as a single line
x – use extended regular expressions

CSCI 4152/6509, Vlado Keselj Lecture 5 18 / 30

Text Processing Example

Perl is particularly well suited for text
processing

Easy use of Regular Expressions

Convenient string manipulation

Associative arrays

Example: Counting Letters

CSCI 4152/6509, Vlado Keselj Lecture 5 19 / 30

Experiments on “Tom Sawyer”

File: TomSawyer.txt:
The Adventures of Tom Sawyer

by

Mark Twain (Samuel Langhorne Clemens)

Preface

MOST of the adventures recorded in this book really occurred;

one or two were experiences of my own, the rest those of boys

who were schoolmates of mine. Huck Finn is drawn from life;

Tom Sawyer also, but not from an individual -- he is a

combination of the characteristics of three boys whom I knew,

and therefore belongs to the composite order of architecture.

CSCI 4152/6509, Vlado Keselj Lecture 5 20 / 30

Letter Count Total

#!/usr/bin/perl

Letter count total

my $lc = 0;

while (<>) {

while (/[a-zA-Z]/) { ++$lc; $_ = $’; }

}

print "$lc\n";

./letter-count-total.pl TomSawyer.txt

296605

CSCI 4152/6509, Vlado Keselj Lecture 5 21 / 30

Letter Frequencies

#!/usr/bin/perl

Letter frequencies

while (<>) {

while (/[a-zA-Z]/) {

my $l = $&; $_ = $’;

$f{$l} += 1;

}

}

for (keys %f) { print "$_ $f{$_}\n" }

CSCI 4152/6509, Vlado Keselj Lecture 5 22 / 30

Letter Frequencies Output

./letter-frequency.pl TomSawyer.txt

S 606

a 22969

T 1899

N 324

K 24

d 14670

Y 214

E 158

j 381

y 6531

u 8901

...
CSCI 4152/6509, Vlado Keselj Lecture 5 23 / 30

Letter Frequencies Modification

#!/usr/bin/perl

Letter frequencies (2)

while (<>) {

while (/[a-zA-Z]/) {

my $l = $&; $_ = $’;

$f{lc $l} += 1;

}

}

for (sort keys %f) { print "$_ $f{$_}\n" }

CSCI 4152/6509, Vlado Keselj Lecture 5 24 / 30

New Output

./letter-frequency2.pl TomSawyer.txt

a 23528

b 4969

c 6517

d 14879

e 35697

f 6027

g 6615

h 19608

i 18849

j 639

k 3030

...
CSCI 4152/6509, Vlado Keselj Lecture 5 25 / 30

Letter Frequencies Modification (3)

#!/usr/bin/perl

Letter frequencies (3)

while (<>) {

while (/[a-zA-Z]/) {

my $l = $&; $_ = $’;

$f{lc $l} += 1; $tot ++;

}

}

for (sort { $f{$b} <=> $f{$a} } keys %f) {

print sprintf("%6d %.4lf %s\n",

$f{$_}, $f{$_}/$tot, $_); }

CSCI 4152/6509, Vlado Keselj Lecture 5 26 / 30

Output 3

35697 0.1204 e

28897 0.0974 t

23528 0.0793 a

23264 0.0784 o

20200 0.0681 n

19608 0.0661 h

18849 0.0635 i

17760 0.0599 s

15297 0.0516 r

14879 0.0502 d

12163 0.0410 l

8959 0.0302 u

...
CSCI 4152/6509, Vlado Keselj Lecture 5 27 / 30

Elements of Morphology

Reading: Section 3.1 in the textbook, “Survey of
(Mostly) English Morphology”

morphemes — smallest meaning-bearing units

stems and affixes; stems provide the “main” meaning,
while affixes act as modifiers

affixes: prefix, suffix, infix, or circumfix

cliticization — clitics appear as parts of a word, but
syntactically they act as words (e.g., ’m, ’re, ’s)

tokenization, stemming (Porter stemmer),
lemmatization

CSCI 4152/6509, Vlado Keselj Lecture 5 28 / 30

Tokenization

Text processing in which plain text is broken into
words or tokens

Tokens include non-word units, such as numbers and
punctuation

Tokenization may normalize words by making them
lower-case or similar

Usually simple, but prone to ambiguities, as most of
the other NLP tasks

CSCI 4152/6509, Vlado Keselj Lecture 5 29 / 30

Stemming

Mapping words to their stems

Example: foxes → fox

Use in Information Retrieval and Text Mining to
normalize text and reduce high dimensionality

Typically works by removing some suffixes according
to a set of rules

Best known stemmer: Porter stemmer

CSCI 4152/6509, Vlado Keselj Lecture 5 30 / 30

