Lecture 11 p.1

Faculty of Computer Science, Dalhousie University 30-Oct-2025
CSCI 4152/6509 — Natural Language Processing

Lecture 11: N-gram Model and Markov Chain Model

Location: Studley LSC-Psychology P5260 Instructor: Vlado Keselj
Time: 14:35 — 15:55

Previous Lectures

— Fully Independent Model (continued)
— Naive Bayes classification model
— Assumption, definition
— Graphical representation
Spam detection example
Computational tasks
— Number of parameters
pros and cons, additional notes
— Bernoulli and Multinomial Naive Bayes

13 N-gram Model and Markov Chain Model

Before we introduce this model, let us first introduce Language Modeling.

To understand better the significance of the N-gram Model, let us first introduce the language modeling—an
important task in the probabilistic NLP. Language Modeling can be described as the task of building a probabilistic
model that can estimate the probability of an arbitrary natural language sentence; i.e., of the probability P(sentence).

One application of this problem is in speech recognition. In speech recognition, we are interested in

arg max P (sentence|sound)
sentence

This is equal to:

P(sentence, sound)
arg max P(sentence|sound) = arg max
sentence sentence P(Sound)

= arg max P(sentence, sound)
sentence

= arg max P(sound|sentence)P (sentence)

sentence

It is easier to estimate P(sound|sentence) than P(sentence, sound), and it is done by an acoustic model, while
P(sentence) is estimated by a language model.

Slide notes:

Language Modeling

— Task of estimating probability of arbitrary utterance in a language
— Alternative task: Predicting the next token in a sequence: e.g., the

next word or words, in a sentence, or next character or characters
— N-gram model: a “natural” model for this task

October 29, 2025, CSCI 4152/6509 http://web.cs.dal.ca/~vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 11 p.2 CSCI 4152/6509

N-gram model is very simple and it is among the most successful models for language modelling; trigram (n = 3)
word model in particular. In an n-gram model, we calculate joint distribution for all n-tuples of consecutive words
(or characters). For example, in the trigram model, we count the number of occurrences of each triple of consecutive
words from a corpus. Using this statistics, we can estimate the probability of arbitrary word w3 following two
given words w; and ws: P(ws|wyws). It is useful to assign some small probability to unseen triples as well (using
a technique called smoothing). If we use two “dummy” words ‘-’ at the beginning of each sentence, then the
probability of arbitrary sentence can be calculated as:

P(wiws ... wy) = P(w] -)P(wa|w: -)P(ws|wawy) . .. Pwy, |wp—1wp,—2)

N-gram Model: Notes

— Reading: Chapter 4 of [IM]
— Use of log probabilities

— similarly as in the Naive Bayes model for text
— Graphical representation

Graphical Representation

g\@f\g* e

previous (n—1)—gram
Use of log probabilities

Multiplying a large number of probability values, which are typically small, gives a very small result (close to zero),
so in order to avoid floating-point underflow, we should use addition of logarithms of the probabilities in the model.

Slide notes:

N-gram Model as a Markov Chain

— N-gram Model is very similar to Markov Chain Model
— Markov Chain consists of
— sequence of variables V1, V5, ...
— probability of V; is independent
— each next variable is dependent only on the previous
variable: V5 on Vi, V3 on Vs, etc.
— Conditional Probability Tables: P(V7), P(V2|V1), ...
— Markov Chain is identical to bi-gram model, but higher-order
n-gram models are very similar as well

Markov Chain: Formal Definition

A stochastic process in general is a family of random variables {V;}, where ¢ is an index from a set I. A stochastic
process is also denoted as {V;, i € I'}, or {V;,t € T}, with intuition coming from time index. The index set I can
be an arbitrary ordered set, but we will usually assume they it is either finite or countably infinite (i.e., enumerable),
and then process can be denoted as {V;}2,. A process is called a Markov process if given the value of V4, for some
index t, the values of V;, where s > ¢, do not depend on values of V,,, where v < t. In case of a finite or countably
infinite index set, this means that the value of V; depends only on the value of the previous variable V;_;. In this
case, the Markov process is called a Markov Chain.

A Markov Chain can be described similarly to a Deterministic Finite automaton (DFA), but instead of reading input,
we assume that we start in a random state based on a probability distribution, and change states in sequence based

CSCI 4152/6509 Lecture 11 p.3

on a probability distribution of the next state given the previous state.

For example, a Markov chain could be illustrated in the following way.

0.8
—~

This model could generate the sequence { A, C, D, B, C'} of length 5 with probability:
0.8-0.6-1.0-0.9-1.0=0.432

assuming that we are modelling sequences of this length.

If we want to model sequences of arbitrary length, we would also need a stopping probability.

Evaluating Language Models: Perplexity

— Evaluation of language model: extrinsic and intrinsic

— Extrinsic: model embedded in application

— Intrinsic: direct evaluation using a measure
In extrinsic evaluation, the language model is embedded in a wider application, and the performance of the
model is measured through the performance of the application. For example, we can evaluate performance of
a language model by measuring improvement in a speech recognition application in which it is embedded.
In intrinsic evaluation, we directly evaluate the language model using some measure, such as perplexity.

— Perplexity, W — text, L = |W|,

o1 1

Weighted average branching factor

Perplexity
Use of Language Modeling in Classification

— Perplexity, W — text, L = ||,

o1 !
PP(W) = m \/1;[P(w;|wi—p41 - - wi—1)

— Text classification using language models

The perplexity measure tells us how well a language model predicts an existing text. It is also called a weighted
branching factor. For example, if we generate a text using words from a 100,000-word vocabulary, and we have not
better way to predict words than randomly choosing them using a uniform distribution, then the perplexity measure
for any text will be about 100,000. A lower perplexity measure means that the model is “predicting” a text better.
For example, a perplexity of 4 means that the model predicts the next word with odds of 1 to 4, which would be
quite good.

Lecture 11 p.4 CSCI 4152/6509

We can do text classification using language models and perplexity in the following way: We build language models
for different classes by training them using training data for each class. Then, we measure perplexity of each model
on a test document, and we choose the class whose model has lowest perplexity, as shown in the following figure:

T

Documents L
in Class 1 anguage
':: > P
Model 1 %
g Class ? Choose class
with minimal
— .
S \e‘l\"\\ﬂ Perplexity
Documents L per?
in Class 2 |:: > anguage
Model 2

Slide notes:

Unigram Model and Multinomial Naive Bayes

— It is interesting that classification using Unigram Language Model
is same as Multinomial Naive Bayes with all words

13.1 N-gram Model Smoothing

Smoothing is any technique in probabilistic modeling used to avoid zero probabilities in a model trained from
training data. Namely, due to the sparse data problem, we may easily have one of the probabilities estimated to
zero by the MLE process. Since these probabilities are typically used as factors in products, this easily leads to a
zero probability being assigned to a full configuration that happen not to be seen in the training data. To avoid this
situation, we use smoothing techniques. Generally speaking, the smoothing techniques take some probability from
seen and predictable events and assign it to the unseen events. There are several well-known smoothing techniques
used in the n-grams model: add-one smoothing (or Laplace smoothing), Witten-Bell smoothing, Good-Turing
smoothing, Kneser-Ney smoothing (described in the new edition of the Jurafsky and Martin textbook), etc. We will
now take a closer look at the Laplace (add-one) and the Witten-Bell smoothing. These techniques can be generalized
to other models as well.

Example: Character Unigram Probabilities

— Training example: mississippi
— What are letter unigram probabilities?
— What would be probability of the word ‘river’ based on this model?

The letter unigram probabilities without smoothing:

Letter Counts Estimated frequency
i 4 4/11 ~ 0.363636363636364
m 1 1/11 = 0.0909090909090909
p 2 2/11 2~ 0.181818181818182
s 4 4/11 ~ 0.363636363636364
other letters 0 0
Total: 11 1.0

The probability of the word ‘river’ would be O in this model, since it contains letters with the probability 0, so the

CSCI 4152/6509 Lecture 11 p.5

product of those letter probabilities would be 0:

P(‘river’) = P(r)P(i)P(v)P(e)P(xr) =0- % -0-0-0=0.0

13.1.1 Add-one Smoothing (Laplace Smoothing)

The add-one smoothing is also known the Laplace smoothing. We start with the count of 1 for all events, and thus
prevent any events to end up with the probability 0. In a unigram example, it would mean that all tokens w € V,
where V' is the vocabulary, start with count 1. If |V| is the vocabulary size, and n is the number of tokens in a text,
the smoothed unigram probabilities end up to be

#(w) +1
n+ |V]|

P(w) =

where # (w) denotes the number of occurrences of the token w in the training text.

Similarly, for bigram smoothing for example, the estimated probability would be:

b 1
Plap) = 2001
#(0) + V]
If the vocabulary size is very large compared to #(b), which happens with words, for example, or if b is relatively
rare, then this kind of smoothing takes too much of the probability distribution from the seen events and assigns it to
the unseen events.

Mississippi Example: Add-one Smoothing

— Let us again consider the example trained on the word: mississippi
— What are letter unigram probabilities with add-one smoothing?
— What is the probability of: river

With the Add-one smoothing, we would start with count 1 for each letter in the vocabulary. If we assume that our
vocabulary consists of all lower-case letters in the English alphabet, the total alphabet size would be 26. Since each
letter count would start with 1, with 11 letters in the word ‘mississippi’, we would have a total count of 37. This
leads to the following table of smoothed probabilities:

Letter Modified counts Estimated frequency
i 5 5/37 = 0.135135135135135
m 2 2/37 ~ 0.0540540540540541
p 3 3/37 =~ 0.0810810810810811
s 5 5/37 =~ 0.135135135135135
other letters(x22) 1(x22) 1/37 = 0.027027027027027 (x22)
Total: 37 1.0

The probability of the word ‘river’ in this model would be:

11
P(‘river’) = P(r)P(L)P(P(e)P(x) = 5= o - 5= - 5o 5o & 7-21043363591149 - 10~

13.1.2 Witten-Bell Discounting

In the context of data compression, Witten and Bell (1991) analyzed several smoothing methods, under the title
“The Zero-Frequency Problem: Estimating the Probabilities of Novel Events in Adaptive Text Compression”. They

Lecture 11 p.6 CSCI 4152/6509

considered three methods A, B, and C, and then, based on a Poisson process modelling, the methods P, X, and XC.
It is interesting to note that the method X uses the same, or very similar, idea as in the Good-Turing smoothing.

The method C is what is usually referred to as the Witten-Bell smoothing. It uses an intuitive idea from data
compression. Let us assume that we use a data compression method, which uses a dictionary of tokens wy, wo, ...,
w,, so far. As long as the new tokens are from this set, we can encode them in some way, but whenever a new token
appears, we need a special ‘escape’ code to introduce this token to the vocabulary. In this way, we can think of new
tokens appearing as a new event, beside the events of seeing existing tokens. This is supported in practice by seeing
approximately constant rate of new words appearing in a text after some initial reading. We can use the frequency
of such ‘escape’ code as an estimate of the probability of seeing previously unseen events, and make sure that we
allocate that much probability distribution mass for the smoothing purposes.

Example: Let us consider again using the example of training data ‘mississippi’ to train a unigram model,
and then use it to estimate probability of the string ‘river’.

We will consider again estimating probability of 26 lower-case letters from the word ‘mississippi’. Asin the
case of unsmoothed n-grams, we will count letters: ‘m’ 1 time, ‘i’ 4 times, ‘s’ 4 times, and ‘p’ 2 times. However, we
also note that we saw 4 different letters, which is equivalent to seeing ‘escape’ character 4 times, so we will reserve
count 4 for unseen events in future as well. This is how we get the following probabilities using the Witten-Bell
discounting:

Letter Modified counts Estimated frequency
i 4 4/15 =~ 0.266666666666667
m 1 1/15 ~ 0.0666666666666667
p 2 2/15 ~ 0.133333333333333
S 4 4/15 =~ 0.266666666666667
new letters total 4 4/15 =~ 0.266666666666667
Total: 15

When we split the probability reserved for new letters equally among the remaining 26 — 4 = 22 letters, we obtain
the final estimated frequency:

Letter Estimated frequency
i 4/15 =~ 0.266666666666667
m 1/15 =~ 0.0666666666666667
p 2/15 =~ 0.133333333333333
s 4/15 =~ 0.266666666666667
other letters ﬁ =2/165 ~ 0.0121212121212121

The probability of the word ‘river’ in this model would be:

2 4 2 2 2

Formulae for Witten-Bell Discounting If we want to express this in terms of formulae, we will denote that
we saw r distinct tokens in a text of length n, or we can say that we saw n events and r ‘escape’ events, so the
probability of seeing new tokens is ——. Hence the unigram probability for seen tokens:

n+r"
n—+r
and the total probability for unseen tokens is:
r
n+r

It is convenient that in the previous formulae we did not need to know the vocabulary size. If we do know the
vocabulary size, we can now divide the probability for unseen tokens equally, and obtain:
r
P(w) =

(n+r)((V]=7)

CSCI 4152/6509 Lecture 11 p.7

for unseen tokens w.

Bigrams and Higher-order n-grams

The probabilities for bigrams and higher-order n-grams are smoothed in a similar way:

#(ba)
#(b) + 1

for seen bigrams ba, where 7y, is the number of different tokens following b. The number #(b) does not represent
necessarily the exact number of occurrences of b in this case. More precisely, it is the number of occurrences of b
except at the end of text; i.e., the number of occurrences of b where b is followed by another token. The remaining
probability mass for unseen events:

P(alb) =

T
#(b) + 7

is used for unseen bigrams that start with b, and is usually divided according to lower-order n-grams; which would
be unigrams in this case. If IV, is the set of all tokens that never follow b in the training data, then:

Ty

Pl = gm

- P(a)/Xeen, P(z)
for unseen bigrams ba.

The next model: HMM. Our next probabilistic model is the Hidden Markov Model (HMM), and it is applicable
to the task of labelling tokens of a sequence, such as the task of Part-of-Speech tagging (POS Tagging). Before that,
we will make a review of the parts of speech in English, which are quite applicable with some changes to other
natural languages as well.

Slide notes:

The Next Model: HMM

— HMM — Hidden Markov Model

Typically used to annotate sequences of tokens

Most common annotation: Part-of-Speech Tags (POS Tags)
— First, we will make a review of parts of speech in English

14 Part-of-Speech Tags (POS Tags)

Slide notes:
Part-of-Speech Tags (POS Tags)
— Reading: Sections 5.1-5.2 (Ch. 8 in new edition)
— Word classes called Part-of-Speech (POS) classes
— also known as syntactic categories, grammatical
categories, or lexical categories
— Ambiguous example: Time flies like an arrow.
Time flies like an arrow.
1. N v P D N
2. N N vV D N

— POS tags: labels to indicate POS class
— POS tagging: task of assigning POS tags

Lecture 11 p.8 CSCI 4152/6509

Note about reading material: Some reading material for the topics in this section can be found in the JM textbook
in Sections 5.1-5.2 (5.1 (Mostly) English Word Classes” and ““5.2 Tagsets for English™), or in Chapter 8 of the
upcoming edition 3 of the book.

The words in text are divided into classes according to their function, and these classes are called Part-of-Speech
classes or POS classes for short. The POS classes are also sometimes called syntactic categories, grammatical
categories, or lexical categories.

We can take a look at the ambiguous example of the sentence “Time flies like an arrow.” that we used before. The
sentence can be interpreted in two ways, one is that the time goes very fast, and another one is that a species of flies,
called “time flies”, like the arrow fruit. We can even think of a third meaning, which is a command to go and time
the files immediately. If we label the words in this sentence according to their part-of-speech classes, we get three
different sequences of labels for the the three different meanings as follows:

Time flies like an arrow.
1. N \" P D N
2. N N \" D N
3. \" N P D N

The labels used below the words denote the following well-known POS classes: ‘N’ for nouns, ‘V’ for verbs, ‘P’ for
prepositions, and ‘D’ for determiners.

The task of determining the part-of-speech label for each word in a sentence, or a text in general is called POS
tagging. From the above example, we can see that POS tagging is ambiguous, i.e., it may depend on the text
interpretation by a reader.

POS Tag Sets

The concept of parts of speech as types of words used in language is known in linguistics for a long time. It was
mentioned by several Antient Greek writers and it is well described in the work “The Art of Grammar”, which is
believed to be written by Dionysius Thrax in the 2nd century BC. This work distinguishes the following eight parts
of speech: nouns, verbs, pronouns, prepositions, adverbs, conjunctions, participles, and articles.

Slide notes:
POS Tag Sets

— Traditionally based on Ancient Greece source: eight parts of

speech:
— nouns, verbs, pronouns, prepositions, adverbs,
conjunctions, participle, and articles

— Computer processing introduced a need for a large set of
categories

— Useful in NLP, e.g.: named entity recognition, information
extraction

— Various POS tag sets (in NLP):
Brown Corpus, Penn Treebank, CLAWS, C5, C7, ...

— We will use the Penn Treebank system of tags

WSJ Dataset

— WSJ — Wall Street Journal data set

Most commonly used to train and test POS taggers
Consists of 25 sections, about 1.2 million words
Example:

CSCI 4152/6509

Pierre NNP Vinken NNP , , 61 CD years NNS old JJg , ,
will MD join VB the DT board NN as IN a DT
nonexecutive JJ director NN Nov. NNP 29 CD

Mr. NNP Vinken NNP is VBZ chairman NN of IN
Elsevier NNP N.V. NNP , , the DT Dutch NNP
publishing VBG group NN

Rudolph NNP Agnew NNP , , 55 CD years NNS old JJ
and CC former JJ chairman NN of IN Consolidated NNP
Gold NNP Fields NNP PLC NNP , , was VBD named VBN

Open and Closed Categories

— Word POS categories are divided into two sets: open and closed categories:
— open categories
— dynamic set
— content words
— larger set
— e.g.: nouns, verbs, adjectives
— closed categories or functional categories:
— fixed set
— small set
— frequent words
— e.g.: articles, auxiliaries, prepositions

Lecture 11 p.9

The words of a language, and generally POS categories, can be divided into two sets: open and closed categories.

Open POS categories are lexical categories that are dynamic in sense that their content changes over time, or
depending on dialect or domain of usage. These sets are larger and the words bear most of the information content

in a text. Some examples of open word categories are nouns, verbs, and adjectives.

Closed or functional POS categories are lexical categories consisting of fixed sets of words, which are used
frequently in text and they are typically used in a functional way, i.e., as syntactic fillers and with less information

content. Examples of such categories are articles, auxiliaries, and prepositions.

14.1 Open Word Categories

The open word categories are: nouns, adjectives, verbs, and adverbs. There are also groups of adverbs that belong
to the closed word categories. Generally, like many other rules in natural language, this division is not strict and

there are many exceptions.

Open Word Categories

nouns (NN, NNS, NNP, NNPS)
— concepts, objects, people, and similar
adjectives (JJ, JIR, JIS)
— modify (describe) nouns
verbs (VB, VBP, VBZ, VBG, VBD, VBN)
— actions
— adverbs (RB, RBR, RBS)
— modify verbs, but other words too

Lecture 11 p.10 CSCI 4152/6509

Nouns (NN, NNS, NNP, NNPS)

Nouns refer to people, animals, objects, concepts, and similar.

Features:

number: singular, plural

— case: subject (nominative), object (accusative)

Some languages have more cases, and more number values
— Some languages have grammatical gender

Nouns have a number of linguistic properties called features, which vary across languages. The features are
important in creating larger phrases and sentences in a linguistically correct way. The most common feature is
number and the main values for it are singular and plural, expressing whether we are talking about one instance of
an object or multiple instances. Some languages distinguish a more finer-grained set of values for number. The
number, as other features, is typically expressed by modifying a suffix of a word; for example, the suffix -s is added
in English for plural nouns.

Case is another common feature for nouns, which is not used much in English. The case indicates the syntactic and
semantic role a noun plays in a phrase or a sentence. For example, the nominative case is used for nouns in the
subject position in a sentence, while accusative case is used in the direct object position.

Noun Tags and Examples

Slide notes:

Noun Tags and Examples

NN for common singular nouns; e.g., company, year, market

NNS for common plural nouns; e.g., shares, years, sales, prices,
companies

NNP for proper nouns (names); e.g., Bush, Japan, Federal, New York,
Corp, Mr., Friday, James A. Talcott (“James NNP A. NNP
Talcott NNP”)

NNPS for proper plural nouns; e.g., Canadians, Americans, Securities,
Systems, Soviets, Democrats

The noun tags in the Penn tag set are: NN, NNS, NNP, and NNPS.

NN is used for common singular nouns, such as company, year, and market.

NNS is used for common plural nouns, such as shares, years, sales, prices, and companies.

NNP is used for proper singular nouns (names), which are the names of people, geographical entities, countries,
institutions, and similar, such as Bush, Japan, Federal, New York, Corp, Mr. Friday, James A. Talcott. The proper
naes consisting of several words are all tagged with the NNP tag; for example: “James NNP A. NNP Talcott NNP”
The token “Mr.” comes with a person’s name and it would be tagged as NNP as well. The words “Federal” and
“Corp.” are proper nouns as parts of institution or organization names. Somewhat specific to English, the names of
days in a week and months, such as “Friday” and “January” are also proper nouns, so tagged as NNP.

NNPS is used for proper plural nouns, such as Canadians, Americans, Securities, Systems, Soviets, and Democrats.

Adjectives (JJ, JJR, JJS)
Adjectives describe properties of nouns; for example: red rose, long journey, etc.

Adjectives have three forms and each of them is tagged separately:

CSCI 4152/6509 Lecture 11 p.11

Form Example Tag
positive rich 1

comparative richer JIR
superlative richest AN

In the Brown corpus, the corresponding tags were JJ, JJR, and JJT; while the JJS tag was reserved for the semantic
superlative forms, such as: chief, main, top, etc. These forms are tagged as JJ in the Penn Treebank corpus.

Comparatives and superlatives of longer adjectives in English are formed as multi-word sequences, such as “more
intelligent” and “the most intelligent” for the adjective “intelligent”. These sequences are called the periphrastic
adjective forms. They are tagged as follows:

more JJR intelligent JJ

and

the DT most JJS intelligent JJ

Verbs (VB, VBP, VBZ, VBG, VBD, VBN)

Verbs are used to describe:

— actions; e.g., throw the stone
— activities; e.g., walked along the river
— or states; e.g., have $50

Verbs can have different forms and they are tagged accordingly:

Tag Form name Example

VB base eat, be, have, walk, do

VBD past ate, said, was, were, had

VBG present participle eating, including, according, being
VBN past participle eaten, been, expected

VBP present non-3sg eat, are, have, do, say, 're, 'm
VBZ present 3sg eats, is, has, ’s, says

Gerund is a noun which has the same form as the present participle; e.g., ‘Walking is fun.’

Verb Features:

— number: singular, plural

— person: 1st, 2nd, 3rd

— tense: present, past, future

— aspect: progressive, perfect

— mood: possibility, subjunctive (e.g. ‘They requested that he be banned from driving.”)
— participles: present participle, past participle

— voice: passive, active: “He wrote a book.” vs. “A book was written by him.”

Verb Tenses:

present: I walk

infinitive: to walk

— progressive: I am walking
present perfect I have walked

Lecture 11 p.12 CSCI 4152/6509

— past perfect: I have walked

Adverbs (RB, RBR, RBS)

Adverbs modify verbs, as their name suggests, but also other lexical classes, such as adjectives and adverbs. In this
way their function is quite heterogeneous. For example, some typical adverbs that can be used to modify verbs are
allegedly and quickly, because they obviously describe whether something happened or how something happened.

Not all adverbs belong to the open group of categories: a group of adverbs called qualifiers or degree adverbs
belong to the closed group. Example of such adverbs are very and not.

Here are a few examples of adverb usage. An example of an adverbs modifying a verb:
She often travels to Las Vegas.
an example of adverbs modifying verbs and adverbs:
Unfortunately, John walked home extremely slowly yesterday.
and two examples of adverbs modifying adjectives:

a very unlikely event
a shockingly frank exchange

Adverb Inflections

Adverbs can have three forms, similarly to adjectives;

Tag Form Examples

RB positive late, often, quickly
RBR comparative later, better, less
RBS superlative most, best

The superlative adverbs are tagged as RBT in the Brown corpus.

Adverbial Nouns are nouns that also behave as adverbs. Such nouns are ‘home’ and ‘tomorrow.” For example,
we can say

I am going home.
but not
* 1 am going room.

In the Brown corpus these nouns were tagged as NNR, but in the Penn Treebank corpus they are tagged as NN.

Another noun tag in the Brown corpus that cannot be found in the Penn Treebank corpus is NN$, which was used to
denote possessives, like ‘people’s’; in the Penn Treebank this would be tagged as ‘people NNP ’s POS’.

14.2 Closed Word Categories

— small, fixed, frequent, functional group
— typically no morphological transformations
— include:
— determiners, pronouns, prepositions, particles, auxiliaries and modal verbs, qualifiers, conjunctions,
numbers, interjections

CSCI 4152/6509 Lecture 11 p.13

Determiners (DT)

— articles: the, a, an
— demonstratives:
— this, that, those
— some, any
— either, neither
— quantifiers: all, some

Interrogative Determiners (WDT)

Interrogative determiners are tagged as a separate class. Some examples are: ‘what’, ‘which’, ‘whatever’, and
‘whichever’.

Predeterminers (PDT)

— Examples: both, quite, many, all such, half
— Examples in context:
“half the debt”, “all the negative campaign”
— Interesting classifications of determiners (Bond 2001)
— by linear order: pre-determiners, central determiners, post-determiners
— by meaning: quantifiers, possessives, determinatives

A Side Note:

Two interesting classifications of determiners were given by Francis Bond in his dissertation “Determiners and
Numbers in English contrasted with Japanese, as exemplified in Machine Translation.” These classifications are a
classification of determiners by linear order, and a classification by meaning. This classification is not in accordance
with the Penn tag set; e.g., the numerals are also included in the set of determiners.

Determiners grouped by linear order:

— pre-determiners
— quantifiers: all, both
fractions: half, one-third, . ..
multiples: double, twice, three times, ...
what (exclamative: What a great party!)
— central determiners
— articles: the, a(an), some, any
demonstratives: this/these, that/those
possessive pronouns: my, your, his, her, its, their, our
— possessive phrases: the king’s, his friend’s, . ..
quantifiers no, some, any, either, neither, another, each, enough, much, more, most, less, a few, a little,
many a, several
which, what (interrogative: What sound is that?)
pronouns: we, us, you
— post-determiners
— cardinal numerals: one, two, three, . ..
— fixed-numbers: dozen, score, ...
quantifiers: every, many, few, little
emphatic possessive: own
— such

Lecture 11 p.14 CSCI 4152/6509

Determiners grouped by meaning:

— quantifiers
— cardinal numerals one, two, three, ...
— other quantifiers all, both, no, some, any, much, many, few, a few, little, a little, either, neither, another,
enough, more, most, less, many a, several
— fractions: half, one-third, ...
— multiples: double, twice, three times, ...
— possessives
— possessive pronouns: my, your, his, her, its, their, our
— possessive phrases: the king’s, his friend’s, . ..
— emphatic possessive: own
— determinatives
— articles: the, a/an, some/any
demonstratives: this/these, that/those
which, what (interrogative)
what (exclamative)
such
— pronouns: we, us, you

Pronouns (PRP, PRPS$)

— PRP for personal pronouns
— examples: I, you, he, she, it, we, you, they
PRP tag for accusative case (diff. tag in Brown):
— examples: me, him, her, us, them
PRP tag for reflexive pronouns (diff. in Brown):
— examples: myself, ourselves, ...
— PRPS$ tag for possessive pronouns:
— examples: your, my, her, his, our, their, its
— PRP for second possessives (diff. in Brown):
— examples: ours, mine, yours, ...

The personal pronouns are tagged with PRP in the Penn tagset. The following are some of the features of pronouns:

number: singular (sg), plural (pl)

— person: first (1st), second (2nd), third (3rd)

case: nominative (subject), accusative (object)
gender: masculine (he), feminine (she), neuter (it)

The singular personal pronouns used to be tagged with PP in the Brown corpus, and the plural personal pronouns
were tagged with PPS (we, you, they).

The personal pronouns in accusative case (me, you, him, her, it, us, you, them) have the same PRP tag, while in the
Brown corpus they had tag PPO. The reflexive pronouns (myself, ourselves, ...) have the same tag PRP, while they
used to be tagged PPL and PPLS in Brown.

Tha tag for possessive pronouns is PRP$; e.g., for your, my, her, our, his, their, its.

The second possessives (ours, mine, yours, ...) are tagged PRP (they used to be tagged PP$$ in Brown).

Wh-pronouns (WP) and Wh-possessive (WPS$)

— wh-pronouns (WP): who, what, whom, whoever, ...
— wh-possessive pronoun (WP$): whose

CSCI 4152/6509 Lecture 11 p.15

Prepositions (IN)
Prepositions reflect spatial or time relationships.

Examples: of, in, for, on, at, by, concerning, ...

Particles (RP)

— frequently ambiguous and confused with prepositions
— used to create compound verbs
— examples: put off, take off, give in, take on, “went on for days,” “put it off”

Possessive ending (POS)

— possessive clitic: ’s
— Example: John’s book
— tagged as: John NNP ’s POS book NN

Modal Verbs (MD)

— the examples of modal verbs: can, may, could, might, should, will

— and their abbreviations: ’d, ’11

— tag for modal verbs: MD

— negative forms are separated into a modal verb and an adverb ‘not’ (will be covered); e.g.: ‘couldn’t’ is tagged
as “could MD n’t RB”

— Auxiliary verbs are: be, have, and do; and their different forms

— in Brown: each auxiliary verb has a separate tag

— in Penn Treebank: they are tagged in the same way as common verbs (we will see that later)

Infinitive word ‘to’ (TO)

— used to denote an infinitive: e.g., to call
— ‘na’ is marked as TO in ‘gonna’, ‘wanna’ and similar; e.g.: “gonna call” is tagged “gon VB na TO call VB”

Qualifiers (RB)

— qualifiers are closed adverbs, and they are tagged as adverbs (RB) (covered later)
— example: not, n’t, very
— postqualifiers: enough, indeed

Wh-adverbs (WRB)

Examples: how, when, where, whichever, whenever,. . .

Conjunctions (CC)

— words that connect phrases

— coordinate conjunctions (tag: CC) connect coordinate phrases:

— examples; and, or, but, yet, plus, versus, ...

— subordinate conjunctions connect phrases where one is subordinate to another
— examples: if, although, that, because, . ..

Lecture 11 p.16 CSCI 4152/6509

— subordinate conjunctions are tagged as prepositions (IN) in Penn Treebank
— in Brown corpus, they used to be tagged CS

Numbers (CD)

Numbers behave in a similar way to adjectives: they also modify nouns. Here, we distinguish two kinds of numbers:
cardinal numbers or cardinals, and ordinal numbers or ordinals.

Examples:

— cardinals: 1, 0, 100.34, hundred, etc.
— ordinals: first, second, 3rd, 4th, etc.

Cardinal numbers are tagged as CD.

Ordinal numbers have a separate tag in the Brown corpus—OD. In the Penn Treebank corpus, they are tagged as
adjectives—IJ.

Interjections (UH)

Examples: yes, no, well, oh, quack, OK, please, indeed, hello, Congratulations, . ..

14.3 Remaining POS Classes

Existential ‘there’ (EX)

Belongs to closed word category; example: “There/EX are/VBP three/CD classes/NNS per/IN week/NN”

Foreign Words (FW)

Examples: de (tour de France), perestroika, pro, des

List Items (LS)

Examples: 1, 2, 3, 4, a., b., c., first, second, etc.

Punctuation

Examples Tag Description

’ p comma

;o - - : mid-sentence separator
[. sentence end

({ < (open parenthesis

) Y1 >) closed parenthesis

‘' 'Y non—-1'" e open quote

rors rr closed quote

$ ¢ HK$ CANS S dollar sign

pound sign

+ & @ * *x ffr SYM everything else

CSCI 4152/6509

14.4 Overview of POS Tags
Penn Treebank Part-of-Speech Tags (adapted from [JM])

Lecture 11 p.17

Tag Description example Tag Description Example

CC coordinating and, but, or SYM symbol +, %, &
conjunction TO infinitive ‘to’ to

CD cardinal number one, two, three || UH interjections uh, oops

DT determiner a, the VB verb, base form eat

EX existential ‘there’ there VBD verb, past tense ate

Fw foreign word it mea culpa VBG verb, present participle eating

IN preposition or subordinating of, in, by VBN verb, past participle eaten
conjunction

1 adjective rich VBP verb, non-3sg pres eat

JJR adj., comparative richer VBZ verb, 3sg pres eats

AN adj., superlative richest WDT wh-determiner which

LS list item marker 1,2 a WP wh-pronoun what, who

MD modal verb can should WPS$ wh-possessive whose

NN noun, singular or mass llama, snow WRB wh-adverb how, where

NNS noun, plural llamas $ dollar sign 3

NNP proper noun, singular IBM # pound sign #

NNPS proper noun, plural Canadians “ left quote G

PDT predeterminer all, both ? right quite L7

POS possessive ending s (left parenthesis ([

PRP personal pronoun 1, you, we) right parenthesis)1

PRP$ possessive pronoun your, one’s s comma s

RB adverb quickly, never sentence-end punc. !?

RBR adverb, comparative faster mid-sentence punc. ;

RBS adverb, superlative fastest

RP particle up, off

14.5 Some Tagged Examples

The/DT grand/JJ Jjury/NN commented/VBD on/IN

a/DT number/NN of/IN other/JJ topics/NNS ./.

Book/VB that/DT flight/NN ./.

Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.
It/PRP does/VBZ a/DT first-rate/JJ job/NN ./.

*V/ Y'Y When/WRB the/DT sell/NN programs/NNS hit/VBP
,/, you/PRP can/MD hear/VB the/DT order/NN
printers/NNS start/VB to/TO go/VB '’ /’’ on/IN the/DT
Big/NNP Board/NNP trading/NN floor/NN ,/, says/VBZ

one/CD specialist/NN there/RB ./.

*Y/YY Do/VBP you/PRP make/VB sweatshirts/NNS or/CC
sparkplugs/NNS ?2/.

Lecture 11 p.18 CSCI 4152/6509

15 Hidden Markov Model (HMM)

Let us take consider the problem of part-of-speech tagging; i.e., POS tagging. A POS tagger would be an algorithm
that takes a tokenized sentence as an input and produces a tagged sentence as the output; i.e., the same sentence
in which each token is associated with one of the POS tags. If we want to solve this problem using probabilistic
modeling, then it is natural to associate all tokens to probabilistic variables, and their tags as well. There are
dependencies between words and their associated tags, but it also seems that tags form some typical sequences, so
there are dependencies from each tag to the following tag. This is a motivation for introducing our next model, the
Hidden Markov Model.

We will look again at the example of Markov Chain, shown in a section before.

0.9

0.1

Markov Chain Example

If we assume that the states in such model are not observable, i.e., that they are “hidden,” and we can actually
observe only an “emitted” symbol, based on a probabilistic distribution for producing observable symbols given
a hidden state, we obtain the Hidden Markov Model (HMM). An example of such model is represented in the
following figure:

Hidden Markov Model Example

15.1 HMM Formal Definition

Slide notes:
HMM Formal Definition
— Five-tuple: (Q, 7, a, V, b) (there are other variations)
set of states Q = {q1,q2,...,qn}
initial distribution 7: 7(q) for each state g
transition probabilities a: a(g, s) for any two states ¢ and s
output vocabulary V' = {01, 02,...,0m}
output probability b: b(g, o) for each state ¢ and observable o

M

CSCI 4152/6509 Lecture 11 p.19

In more precise terms, an HMM (Hidden Markov Model) includes a finite set of hidden states @ = {q1, ¢2, - - -, N }-
A probability distribution 7(q) (0 < 7(g) < 1) specifies for each state ¢ the probability that it will be the initial
state, where the following constraint q 7(q) = 1 holds. Instead of making transitions from state to state in
a deterministic way, for each pair of states ¢; and g; there is a probability of the transition from state g; to ¢;
a;j = a(gi,q;), so that 0 < a;; < 1 for each parameter a;; and) _a(q, s) = 1 for each state ¢. From each visited
state an observable o is generated, where o € V/, and V is a finite vocabulary. For an arbitrary state ¢ € @) and any
observable symbol o € V, the output probability b(q, o) that the observable symbol o will be generated is defined,
so that forall ¢ > _b(g,0) = 1.

We can summarize this into the following definition of a Hidden Markov Model:

Definition 15.1 (Hidden Markov Model) A Hidden Markov Model is a five-tuple (Q,,a,V,b), where: Q is a
finite set of states Q = {q1,q2,-..,qn}, and N > 1; 7w : Q — [0, 1] is the initial probability distribution for the
first state, with the constraint quQ w(g) =1, a: Q x Q — [0,1] is the transition probability, a(q;, q;) is also
denoted as a;j and it denotes probability of the next state q; given the current state q;, so y 4€Q a(s,q) =1;Visa
finite output vocabulary V.= {01,049, ...,0;m}; and b : Q X V' — [0, 1] is the output probability, so that b(q, o) is
probability of generating the symbol o in the state q, Yy, b(q,0) = 1, and we also denote b(q;, 0;) as by;.

HMM Assumption

Given an HMM, we can generate samples by generating an initial state, producing an observable corresponding to
that state, and then creating the next state, another observable produced by this state, and so on. For a particular
length n, the following graph can be used to illustrate operation of an HMM:

X1 @ Xn

This representation is sometimes called unrolled HMM graphical representation, in particular when compared with
the DFA-style representation that we saw before. This unrolled representation is similar to the previous graphical
representation of the Naiive Bayes model, and it is called the Belief Network, or Bayesian Network representation.
We will later introduce a more general concept of the Bayesian network.

The value of X is the initial state of the HMM, and the value of each consecutive variable X; is the consecutive
state of HMM. The values of variables O1, Oo, ..., are produced observables.

The HMM assumption formula is:

P(X1,01,..., Xy, 0n) = P(X1) - P(O1]X1) - P(X3|Xy) - P(O2|X3) - ...« P(Xp|Xp1) - P(On| Xy)

HMM Application Areas

Language Modelling

Acoustic Modelling

— Part-of-Speech tagging (POS tagging)

Many kinds of sequence tagging (e.g., extracting bio-medical terms)

HMMs are successfully used for acoustic modeling in speech recognition. They are also successfully applied to
language modeling and POS tagging, among many applications in NLP.

Lecture 11 p.20 CSCI 4152/6509

15.2 POS Tagging using HMM

We will examine now Hidden Markov Model (HMM) in more details, including computational tasks in this moden
on the example of POS tagging application.

HMM use in POS Tagging

Hidden states = POS Tags

Observable variables = words

In practice: higher-order HMM taggers are used, where the nodes keep a bit longer history (e.g., two previous
tags)

Described in [JM] Sec 5.5 (HMM POS Tagging)

Computational Tasks for HMM

— Evaluation: use HMM assumption formula
Generation: generate in the order dictated by the “unrolled” graphical representation
Inference:
— marginalization, conditioning, completion
— need for an efficient method (will discuss it)
— Learning: MLE if labeled examples are given

HMM POS Example

To understand better issues involved in efficient HMM inference, we will use a very small, walk-through example
in POS tagging. We assume that the hidden internal states of the HMM correspond to correct POS tags of words,
while the words correspond to generated observed variables. According to this, a sentence of n words would be
associated with the following HMM graph in the unrolled form:

Tl (12) Tn
j/

The variables W1, ..., W,, are assigned to words in the sentence, while variables 771, ..., T,, are assigned POS tags.
The three probability tables that we mentioned in the definition of HMM are: P(T}), P(T;41|T;), and P(W;|T;)

Having this in mind, suppose that we are given the following training data:

swat V flies N like P ants N
time N flies V like P an D arrow N

To accommodate for unseen words, we can assign a special symbol x to unknown words, and assume that it occurred
0.5 “times” with each tag.

First, we can “learn” the probability of initial states = (= P(T}) by counting how many times each state was the

CSCI 4152/6509 Lecture 11 p.21

first state in a sequence, and obtain the following counts and the resulting probabilities:

q | counts for m(q) q | 7(q)
D 0 ‘D[0
N 1 = N| 05
P 0 P| O
\" 1 V] 0.5

We will also denote the initial probability = (q) as 7(q) = P(T1 =q).

Similarly, we count the transitions in order to estimate transition probabilities a:

counts fora(p,q) [D N P V |sum alp,g) | D N P V
D 0 1 0 O 1 D 0 1 0 0
N 0 0 1 1] 2 = N 0 0 05 05
P 1 1 0 0] 2 P 05 05 0 O
\Y% 0 1 1 0] 2 \Y 0 05 05 0

We will also denote the transitional probability a(p, q) as a(p,q) = PP(T;+1 = q|T; = p), which more clearly
presents meaning of this probability table.

We will incorporate our smoothing method into learning of the output probabilities by giving a count of 0.5 to any
unseen words, marked with ‘*’, to be generated from any tag. This is how we obtain the following counts:

counts for b(¢q,0) | an ants arrow flies like swat time * | sum
D 1 0 0 0 0 0 0 05|15
N 0 1 1 1 0 0 1 051 45
P 0 0 0 0 2 0 0 05|25
\Y 0 0 0 1 0 1 0 05| 25

which leads to the following estimated probabilities obtained by dividing numbers in each row with the corresponding

sum:

b(g,0) | an ants arrow flies like swat time *
D 2/3 0 0 0 0 0 0 1/3
N 0 2/9 2/9 2/9 0 0 2/9 1/9
P 0 0 0 0 4/5 0 0 1/5
\Y 0 0 0 2/5 0 2/5 0 1/5

Another way to represent the learned table is as the following conditional probability tables (CPTs):

Generated Tables

| P(My), T,y T, |P(GTi—y) and T, Wi P(W;|Ty)

N 0.5 D N 1 D an 2/3 = 0.666666667
V.| 05 N P 0.5 D * 1/3 =~ 0.333333333
N Y 0.5 N ants | 2/9 ~ 0.222222222
P D 0.5 N arrow | 2/9 =~ 0.222222222
P N 0.5 N flies | 2/9~ 0.222222222
v N 0.5 N time | 2/9=0.222222222
v P 0.5 N * 1/9 =~ 0.111111111

P like | 0.8

P * 0.2

V flies |04

vV swat |04

\ * 0.2

Lecture 11 p.22 CSCI 4152/6509

In the tables above we did not include zero-probabilities: for example, P(T; = V|T;_; = D) is not included since
it is equal to 0. The symbol ‘*’ is used to denote any unseen word that may appear in a testing sentence.

	N-gram Model and Markov Chain Model
	N-gram Model Smoothing
	Add-one Smoothing (Laplace Smoothing)
	Witten-Bell Discounting

	Part-of-Speech Tags (POS Tags)
	Open Word Categories
	Closed Word Categories
	Remaining POS Classes
	Overview of POS Tags
	Some Tagged Examples

	Hidden Markov Model (HMM)
	HMM Formal Definition
	POS Tagging using HMM

