Natural Language Processing CSCI 4152/6509 — Lecture 11 N-gram Model and Markov Chain Model

Instructors: Vlado Keselj

Time and date: 14:35 – 15:55, 30-Oct-2025 Location: Studley LSC-Psychology P5260

Previous Lectures

- Fully Independent Model (continued)
- Naïve Bayes classification model
 - Assumption, definition
 - Graphical representation
 - Spam detection example
 - Computational tasks
 - Number of parameters
 - pros and cons, additional notes
 - Bernoulli and Multinomial Naïve Bayes

N-gram Model

- Let us first introduce language modeling
- Language Modeling: Estimating probability of arbitrary NL sentence: P(sentence)
- Example: Speech recognition

$$\begin{array}{lll} \arg\max_{\mathrm{sentence}} P(\mathrm{sentence}|\mathrm{sound}) & = & \arg\max_{\mathrm{sentence}} \frac{P(\mathrm{sentence},\mathrm{sound})}{P(\mathrm{sound})} \\ & = & \arg\max_{\mathrm{sentence}} P(\mathrm{sentence},\mathrm{sound}) \\ & = & \arg\max_{\mathrm{sentence}} P(\mathrm{sound}|\mathrm{sentence}) P(\mathrm{sentence}) \end{array}$$

Acoustic model and Language model

Language Modeling

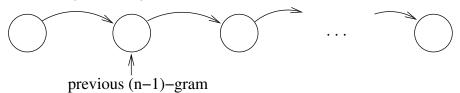
- Task of estimating probability of arbitrary utterance in a language
- Alternative task: Predicting the next token in a sequence: e.g., the next word or words, in a sentence, or next character or characters
- N-gram model: a "natural" model for this task

N-gram Model Assumption

$$P(w_1w_2...w_n) = P(w_1|\cdot\cdot)P(w_2|w_1\cdot)P(w_3|w_2w_1)...P(w_n|w_{n-1}w_{n-2})$$

N-gram Model: Notes

- Reading: Chapter 4 of [JM]
- Use of log probabilities
 - similarly as in the Naïve Bayes model for text
- Graphical representation



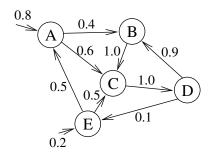
N-gram Model as a Markov Chain

- N-gram Model is very similar to Markov Chain Model
- Markov Chain consists of
 - sequence of variables V_1 , V_2 , ...
 - probability of V_1 is independent
 - each next variable is dependent only on the previous variable: V_2 on V_1 , V_3 on V_2 , etc.
 - Conditional Probability Tables: $P(V_1)$, $P(V_2|V_1)$, . . .
- Markov Chain is identical to bi-gram model, but higher-order n-gram models are very similar as well

Markov Chain: Formal Definition

- Stochastic process is a family of variables $\{V_i\}$ $i \in I$, $\{V_i, i \in I\}$, or $\{V_t, t \in T\}$
- Markov process: for any t, and given V_t , the values of V_s , where s > t, do not depend on values of V_u , where u < t.
- If I is finite or countably infinite: V_i depends only on V_{i-1}
- In this case Markov process is called Markov chain
- Markov chain over a finite domain can be represented using a DFA (Deterministic Finite Automaton)

Markov Chain: Example



This model could generate the sequence $\{A,C,D,B,C\}$ of length 5 with probability:

$$0.8 \cdot 0.6 \cdot 1.0 \cdot 0.9 \cdot 1.0 = 0.432$$

assuming that we are modelling sequences of this length.

Evaluating Language Models: Perplexity

- Evaluation of language model: extrinsic and intrinsic
- Extrinsic: model embedded in application
- Intrinsic: direct evaluation using a measure
- Perplexity, W text, L = |W|,

$$PP(W) = \sqrt[L]{\frac{1}{P(W)}} = \sqrt[L]{\prod_{i} \frac{1}{P(w_{i}|w_{i-n+1}\dots w_{i-1})}}$$

Weighted average branching factor

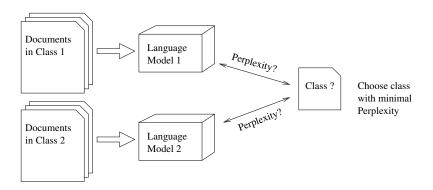
Use of Language Modeling in Classification

• Perplexity, W — text, L = |W|,

$$PP(W) = \sqrt[L]{\frac{1}{P(W)}} = \sqrt[L]{\prod_{i} \frac{1}{P(w_{i}|w_{i-n+1}\dots w_{i-1})}}$$

Text classification using language models

Classification using Language Modeling



Unigram Model and Multinomial Naïve Bayes

 It is interesting that classification using Unigram Language Model is same as Multinomial Naïve Bayes with all words

N-gram Model Smoothing

- Smoothing is used to avoid probability 0 due to sparse data
- Some smoothing methods:
 - Add-one smoothing (Laplace smoothing)
 - Witten-Bell smoothing
 - Good-Turing smoothing
 - Kneser-Ney smoothing (new edition of [JM])

Example: Character Unigram Probabilities

- Training example: mississippi
- What are letter unigram probabilities?
- What would be probability of the word 'river' based on this model?

Unigram Probabilities: mississippi

Add-one Smoothing (Laplace Smoothing)

- Idea: Start with count 1 for all events
- |V| = vocabulary size (unique tokens)
- n = length of text in tokens
- Smoothed unigram probabilities:

$$P(w) = \frac{\#(w) + 1}{n + |V|}$$

Smoothed bi-gram probabilities

$$P(a|b) = \frac{\#(ba) + 1}{\#(b) + |V|}$$

Mississippi Example: Add-one Smoothing

- Let us again consider the example trained on the word: mississippi
- What are letter unigram probabilities with add-one smoothing?
- What is the probability of: river

Mississippi Example: Add-one Smoothing

Witten-Bell Discounting

- Idea from data compression (Witten and Bell 1991)
- Encode tokens as numbers as they are read
- Use special (escape) code to introduce new token
- Frequency of 'escape' is probability of unseen events
- Consider again example: mississippi
- What is the probability of: river

Mississippi Ex.: Witten-Bell Discounting

Witten-Bell Discounting: Formulae

Modified unigram probability

$$P(w) = \frac{\#(w)}{n+r}$$

Probability of unseen tokens:

$$P(w) = \frac{r}{(n+r)(|V|-r)}$$

Bigrams and Higher-order N-grams

Modified probability for seen bigrams

$$P(a|b) = \frac{\#(ba)}{\#(b) + r_b}$$

Remaining probability mass for unseen events

$$\frac{r_b}{\#(b)+r_b}$$

• Estimate for unseen bigrams starting with b (N_b is the set of tokens that never follow b in training text):

$$P(a|b) = \frac{r_b}{\#(b) + r_b} \cdot P(a) / \Sigma_{x \in N_b} P(x)$$

The Next Model: HMM

- HMM Hidden Markov Model
- Typically used to annotate sequences of tokens
- Most common annotation: Part-of-Speech Tags (POS Tags)
- First, we will make a review of parts of speech in English

Part-of-Speech Tags (POS Tags)

- Reading: Sections 5.1–5.2 (Ch. 8 in new edition)
- Word classes called Part-of-Speech (POS) classes
 - also known as syntactic categories, grammatical categories, or lexical categories
- Ambiguous example: Time flies like an arrow.
 Time flies like an arrow.
 - 1. N V P D N
 - 2. N N V D N
 - :
- POS tags: labels to indicate POS class
- POS tagging: task of assigning POS tags

POS Tag Sets

- Traditionally based on Ancient Greece source: eight parts of speech:
 - nouns, verbs, pronouns, prepositions, adverbs, conjunctions, participle, and articles
- Computer processing introduced a need for a large set of categories
- Useful in NLP, e.g.: named entity recognition, information extraction
- Various POS tag sets (in NLP): Brown Corpus, Penn Treebank, CLAWS, C5, C7, ...
- We will use the Penn Treebank system of tags

WSJ Dataset

- WSJ Wall Street Journal data set
- Most commonly used to train and test POS taggers
- Consists of 25 sections, about 1.2 million words
- Example:

```
Pierre NNP Vinken NNP , , 61 CD years NNS old JJ , , will MD join VB the DT board NN as IN a DT nonexecutive JJ director NN Nov. NNP 29 CD . .
Mr. NNP Vinken NNP is VBZ chairman NN of IN Elsevier NNP N.V. NNP , , the DT Dutch NNP publishing VBG group NN . .
```

Rudolph NNP Agnew NNP , , 55 CD years NNS old JJ and CC former JJ chairman NN of IN Consolidated NNP Gold NNP Fields NNP PLC NNP , , was VBD named VBN

Open and Closed Categories

- Word POS categories are divided into two sets: open and closed categories:
- open categories
 - dynamic set
 - content words
 - larger set
 - e.g.: nouns, verbs, adjectives
- closed categories or functional categories:
 - fixed set
 - small set
 - frequent words
 - e.g.: articles, auxiliaries, prepositions

Open Word Categories

- nouns (NN, NNS, NNP, NNPS)
 - concepts, objects, people, and similar
- adjectives (JJ, JJR, JJS)
 - modify (describe) nouns
- verbs (VB, VBP, VBZ, VBG, VBD, VBN)
 - actions
- adverbs (RB, RBR, RBS)
 - modify verbs, but other words too

Nouns (NN, NNS, NNP, NNPS)

Nouns refer to people, animals, objects, concepts, and similar.

Features:

- number: singular, plural
- case: subject (nominative), object (accusative)
- Some languages have more cases, and more number values
- Some languages have grammatical gender

Noun Tags and Examples

- NN for common singular nouns; e.g., company, year, market
- NNS for common plural nouns; e.g., shares, years, sales, prices, companies
- NNP for proper nouns (names); e.g., Bush, Japan, Federal, New York, Corp, Mr., Friday, James A. Talcott ("James NNP A. NNP Talcott NNP")
- NNPS for proper plural nouns; e.g., Canadians, Americans, Securities, Systems, Soviets, Democrats

Adjectives (JJ, JJR, JJS)

- Adjectives describe properties of nouns
- For example: red rose, long journey
- Three inflective forms:

Form	Example	Tag
positive	rich	JJ
comparative	richer	JJR
superlative	richest	JJS

Periphrastic Adjective Forms

- Comparative and superlativ forms in English consist of several words for longer adjectives
- Example: intelligent — more intelligent — the most intelligent
- These are called periphrastic forms
- They are tagged as follows:
 more JJR intelligent JJ
 and
 the DT most JJS intelligent JJ

Verbs (VB, VBP, VBZ, VBG, VBD, VBN)

Verbs are used to describe:

- actions; e.g., throw the stone
- activities; e.g., walked along the river
- or states; e.g., have \$50

Verb Tags

Verbs can have different forms and they are tagged accordingly:

Tag	Form name	Example
VB VBD VBG VBN VBP VBZ	base past present participle past participle present non-3sg present 3sg	eat, be, have, walk, do ate, said, was, were, had eating, including, according, being eaten, been, expected eat, are, have, do, say, 're, 'm eats, is, has, 's, says

Gerund is a noun which has the same form as the present participle; e.g., 'Walking is fun.'

Verb Features

- number: singular, plural
- person: 1st, 2nd, 3rd
- tense: present, past, future
- aspect: progressive, perfect
- mood: possibility, subjunctive (e.g. 'They requested that he be banned from driving.')
- participles: present participle, past participle
- voice: active, passive: "He wrote a book." vs. "A book was written by him."

Verb Tenses

present: I walk

infinitive: to walk

progressive: I am walking

present perfect: I have walked

past perfect: I had walked

Adverbs (RB, RBR, RBS)

- Adverbs modify verbs, but also other classes; e.g., adjectives and adverbs
- Some examples: allegedly, quickly
- Qualifiers or degree adverbs are closed adverbs;
 e.g., very, not
- Example of adverbs modifying verbs:
 She often travels to Las Vegas.
- Example of adverbs modifying verbs and adverbs: Unfortunately, John walked home extremely slowly yesterday.
- Example of adverbs modifying adjectives:
 a very unlikely event
 a shockingly frank exchange

Adverb Inflections

Adverbs can have three forms, similarly to adjectives;

Tag	Form	Examples
RB	positive	late, often, quickly
RBR	comparative	later, better, less
RBS	superlative	most, best

The superlative adverbs are tagged as RBT in the Brown corpus.

Adverbial Nouns

- Interesting example of blurred boundary between classes in some cases
- Adverbial nouns are nouns that also behave as adverbs
- Examples: 'home' and 'tomorrow' I am going home.

but not

* I am going room.

 Tagged as nouns (NN), but in Brown corpus had a separate tag (NNR)

Closed Word Categories

- small, fixed, frequent, functional group
- typically no morphological transformations
- include:
 - determiners, pronouns, prepositions, particles, auxiliaries and modal verbs, qualifiers, conjunctions, numbers, interjections

Determiners (DT)

- articles: the, a, an
- demonstratives:
 - this, that, those; some, any; either, neither
- quantifiers: all, some

Interrogative Determiners (WDT)

what, which, whatever, whichever

Predeterminers (PDT)

- Examples: both, quite, many, all such, half
- Examples in context:
 "half the debt", "all the negative campaign"
- Interesting classifications of determiners (Bond 2001)
 - by linear order: pre-determiners, central determiners, post-determiners
 - by meaning: quantifiers, possessives, determinatives

Pronouns (PRP, PRP\$)

- PRP for personal pronouns
 - examples: I, you, he, she, it, we, you, they
- PRP tag for accusative case (diff. tag in Brown):
 - examples: me, him, her, us, them
- PRP tag for reflexive pronouns (diff. in Brown):
 - examples: myself, ourselves, . . .
- PRP\$ tag for possessive pronouns:
 - examples: your, my, her, his, our, their, its
- PRP for second possessives (diff. in Brown):
 - examples: ours, mine, yours, . . .

Wh-pronouns (WP) and Wh-possessive (WP\$)

- wh-pronouns (WP): who, what, whom, whoever, ...
- wh-possessive pronoun (WP\$): whose

Prepositions (IN)

- Prepositions reflect spatial or time relationships.
- Examples: of, in, for, on, at, by, concerning, . . .

Particles (RP)

- frequently ambiguous and confused with prepositions
- used to create compound verbs
- examples: put off, take off, give in, take on, "went on for days", "put it off"

Possessive ending (POS)

- possessive clitic: 's
- Example: John's book
- tagged as: John NNP 's POS book NN

Modal Verbs (MD)

- the examples of modal verbs: can, may, could, might, should, will
- and their abbreviations: 'd, 'll
- tag for modal verbs: MD
- negative forms are separated into a modal verb and an adverb 'not' (will be covered); e.g.: 'couldn't' is tagged as "could MD n't RB"
- Auxiliary verbs are: be, have, and do; and their different forms
- in Brown: each auxiliary verb has a separate tag
- in Penn Treebank: they are tagged in the same way as common verbs (we will see that later)

Infinitive word 'to' (TO)

- used to denote an infinitive: e.g., to call
- 'na' is marked as TO in 'gonna', 'wanna' and similar;
 e.g.: "gonna call" is tagged "gon VB na TO call VB"

Qualifiers (RB)

- qualifiers are closed adverbs, and they are tagged as adverbs (RB) (covered later)
- example: not, n't, very
- postqualifiers: enough, indeed

Wh-adverbs (WRB)

Examples: how, when, where, whenever,...

Conjunctions (CC)

- words that connect phrases
- coordinate conjunctions (tag: CC) connect coordinate phrases:
- examples; and, or, but, yet, plus, versus, . . .
- subordinate conjunctions connect phrases where one is subordinate to another
- examples: if, although, that, because, . . .
- subordinate conjunctions are tagged as prepositions (IN) in Penn Treebank
- in Brown corpus, they used to be tagged CS

Numbers (CD)

Numbers behave in a similar way to adjectives: they also modify nouns.

There are two kinds of numbers:

- cardinals or cardinal numbers; for example: 1, 0, 100.34, hundred
- **ordinals** or **ordinal numbers**; for example: first, second, 3rd, 4th

Cardinal numbers are tagged as **CD**Ordinal numbers have a separate tag in the Brown corpus—OD. In the Penn Treebank corpus, they are tagged as *adjectives: JJ*

Interjections (UH)

 Examples: yes, no, well, oh, quack, OK, please, indeed, hello, Congratulations, . . .

Remaining POS Classes

- Existential 'there' (EX) Belongs to closed word category; example: "There/EX are/VBP three/CD classes/NNS per/IN week/NN"
- Foreign Words (FW)
- Examples: de (tour de France), perestroika, pro, des
- List Items (LS)
- Examples: 1, 2, 3, 4, a., b., c., first, second, etc.
- Punctuation

Punctuation

comma
mid-sentence separator sentence end open parenthesis closed parenthesis open quote closed quote dollar sign pound sign everything else

Some Tagged Examples

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

Book/VB that/DT flight/NN ./.

Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

It/PRP does/VBZ a/DT first-rate/JJ job/NN ./.

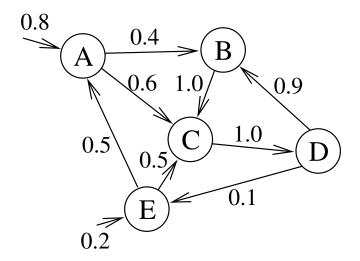
''',' When/WRB the/DT sell/NN programs/NNS hit/VBP ,/, you/PRP can/MD hear/VB the/DT order/NN printers/NNS start/VB to/TO go/VB ''',' on/IN the/DT Big/NNP Board/NNP trading/NN floor/NN ,/, says/VBZ one/CD specialist/NN there/RB ./.

''/' Do/VBP you/PRP make/VB sweatshirts/NNS or/CC sparkplugs/NNS ?/.

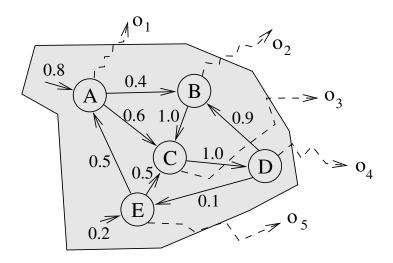
Hidden Markov Model (HMM)

- How do we apply Probabilistic Modelling to POS tagging?
- Idea: Model POS tag sequence as a Markov Chain
 - We can only observe words, which are generated from tags based on a probability distribution
- Model: a hidden Markov Chain with observable symbols emitted from hidden states based on a probability distribution
- This model is known as Hidden Markov Model (HMM)

Markov Chain Example



HMM Example

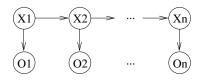


HMM Formal Definition

- Five-tuple: (Q, π, a, V, b) (there are other variations)
- 1. set of states $Q = \{q_1, q_2, \dots, q_N\}$
- 2. initial distribution π : $\pi(q)$ for each state q
- 3. transition probabilities a: a(q,s) for any two states q and s
- 4. output vocabulary $V = \{o_1, o_2, \dots, o_m\}$
- 5. output probability b: b(q,o) for each state q and observable o

HMM Assumption

Another graphical representation



HMM Assumption

$$P(X_1, O_1, \dots, X_n, O_n) = P(X_1) \cdot P(O_1 | X_1) \cdot P(X_2 | X_1) \cdot P(O_2 | X_2) \cdot \dots \cdot P(X_n | X_{n-1}) \cdot P(O_n | X_n)$$

HMM Application Areas

- Language Modelling
- Acoustic Modelling
- Part-of-Speech tagging (POS tagging)
- Many kinds of sequence tagging (e.g., extracting bio-medical terms)

HMM use in POS Tagging

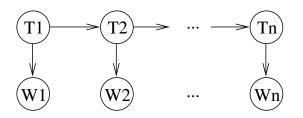
- Hidden states = POS Tags
- Observable variables = words
- In practice: higher-order HMM taggers are used, where the nodes keep a bit longer history (e.g., two previous tags)
- Described in [JM] Sec 5.5 (HMM POS Tagging)

Computational Tasks for HMM

- Evaluation: use HMM assumption formula
- Generation: generate in the order dictated by the "unrolled" graphical representation
- Inference:
 - marginalization, conditioning, completion
 - need for an efficient method (will discuss it)
- Learning: MLE if labeled examples are given

HMM POS Example

Walk-through example to illustrate inference



Conditional probability tables required:

$$P(T_1)$$
, $P(T_{i+1}|T_i)$, and $P(W_i|T_i)$

Learning HMM (Training)

 Let us Learn HMM from completely labeled data:

```
swat V flies N like P ants N
time N flies V like P an D arrow N
```

 We will use smoothing in word generation, by giving a 0.5 count to all unseen words

Generated Tables

T_1	$P(T_1)$		
N	0.5		
V	0.5		

	T_{i-1}	T_i	$P(T_i T_{i-1})$	T_i	W_{i}	$P(W_i T_i)$
	D	N	1	D	an	$2/3 \approx 0.6666666667$
•	N	P	0.5	D	*	$1/3 \approx 0.333333333$
	N	V	0.5	N	ants	$2/9 \approx 0.222222222$
	P	D	0.5	N	arrow	$2/9 \approx 0.222222222$
	P	N	0.5	N	flies	$2/9 \approx 0.222222222$
	V	N	0.5	N	time	$2/9 \approx 0.222222222$
	V	P	0.5	N	*	$1/9 \approx 0.1111111111$
				P	like	0.8
				P	*	0.2
				V	flies	0.4
				V	swat	0.4

0.2