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Faculty of Computer Science, Dalhousie University 28-Oct-2025
CSCI 4152/6509 — Natural Language Processing

Lecture 10: Naive Bayes Model

Location: Studley LSC-Psychology P5260 Instructor: Vlado Keselj
Time: 14:35 — 15:55

Previous Lectures

Probabilistic approach to NLP
Logical vs. plausible reasoning
— Probability theory review
Bayesian inference: generative models
Probabilistic modeling:
— random variables, random models
— full and partial model configurations
— computational tasks in probabilistic modeling
Joint distribution model
— Spam example
— Fully independent model

12 Naive Bayes Classification Model

Slide notes:

Naive Bayes Classification Model

— Fully independent model is not useful in classification: class
variable should be dependent on other variables

— A solution: make class variable dependent, but everything else

independent

Let V; be the class variable

- W, V3, ..., V, are input variables (features)

Classification can be expressed as

argmax P(Vy = 21 |Vo = 29, V3 = 23,..., V), = )
T1

In the Naive Bayes model we assume that all variables are independent except one distinguished variable, which is
usually called the class variable since the model is used for classification. The other variables are called features
or attributes. Since in the classification task the features are used as input and the class variable produces the
classification result or output, we also call the feature variables the input variables and the class variable the output
variable.

If we assume that the variable V; is the output variable, and the variables V5, Vs, ..., V,, are the input variables,
then in the classification problem can be expressed as a conditional probability computation problem, or completion
problem of the probability:

argmax P(Vy = a1 |Vo = 29, Va = x3,..., Vi, = 2p)
T1
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or
arg max P(Vy |V, Va, ..., V,)
Vi
for short. After applying Bayes theorem we obtain:

PV, Vo Vo) = =5 ..|. 1)/)

Now, we use the Naive Bayes independence assumption, which is that the variables Vs, Vs, ..., V,, are conditionally
independent given V;. Then, the above equation becomes:

P(‘/Qv‘/?n .. 'aVrL|V1) : P(‘/l)
P(Va,Va,..., V)
P(Va|V1) - P(Va[V1) - ... - P(Va|V1) - P(V1)
P(‘/Qa‘/?n .t 7Vn)

P(V1|‘/2a ‘/?n ey Vn)

The conditional probabilities P(V;|V;) fori € {2...n} can be efficiently computed and stored, and they eliminate
the sparse data problem. To be clear about the independence assumption that we made, let us repeat it here, the
Naive Bayes Independence Assumption (1) can be stated as follows:

P(V2,Vs,..., Vo [V1) = P(Va[V1) - P(V3|V1) - ... - P(Vo| V1)

If we multiply both sides with P(V7) and use definition of conditional probability, we the second way of expressing
the Naive Bayes Independence Assumption (2) is:

PV, Vo, V3, ..., Vo) =P(Vy) - P(Vo V1) - P(V3|V4) - ... - P(V,|V1)

Graphical Representation: Naive Bayes Model

Assumption:

P(Vi, Vo, Va,..., V) =P(V1) - P(Va| V1) - P(V3]|V1) - ... - P(V,,| V)

— The classification formula becomes
P(Va|V1) - P(V3[Vh) - ... - P(Vu[Vh) - P(V1)

arg max =
& P(Va, Vs, ..., Vy)

arg max P(Va|V1) - P(V5|Vh) - ... - P(V,,|V4) - P(V4)

Naive Bayes Classification

— To calculate marginal probability in the denominator we use

P(‘/Qa‘/37"';vn):ZP(‘/la‘/Q7V37"'7Vn):

1

> P(Va|W) - P(Va[VA) - ... P(Vy|V2) - P(W)
Vi
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Another way of deriving the Naive Bayes assumption is the following:

P(Vlle,...,Vn:xn):
= P(V1 =$1)P(V2=$2|V1 :xl)P(Vg:l‘g‘Vl 2.1‘1,‘/2:.1‘2)...
P(Vn = -rn“/]. = l’],‘/g =T2,.. ~7Vn71 = xnfl)
NB
~ P(Vi=x1)P(Va=a2Vi =21)P(Vz =a3|V1 =21) ...

Equality (3J4) holds always, and equality (S]] is the Naive Bayes assumption.

Summary of the Naive Bayes Model
Naive Bayes assumption

P(V2,V3,..VnlV1) = P(V2IV1) P(V3IV1) ... P(VnlV1)

\ .
text features class variable

Second way of expression Naive Bayes Assumption:

/
P(V1,V2,V3,..,Vn) = P(V1) P(V2,V3,.,VnlV]) =
=P(V1) P(V2IV1) P(V3IV1) ... P(VnlV1)

Naive Bayes Model is a set of tables

V1 |P(VD) || VI [V2| P(V2IVD) | | VI | Va|P(VaIV])

(CPT — Conditional Probability Tables)

Example: A Naive Bayes Model for Spam Detection

In our spam detection example, the Naive Bayes assumption is:
P(Free, Caps, Spam) = P(Spam) - P(Free|Spam) - P(Caps|Spam)

Hence, in order to create a Naive Bayes model from our training data:

Free | Caps | Spam | Number of messages

20
1

0
20

3

2
49
Total: 100

ZZZZ~K<K<A
ZZ~<KZZ~<K
ZKZKZKZA
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we calculate the following tables:

Caps | Spam P(Caps|Spam)
Spam | P(Spam) Y Y | syt ~ 0.8511
2045420+2 _ 113
Y | Thgg o =047 Y | N | 52 ~0075 and
14043449 _ sio
N ~ 100 — 0.53 N Y W ~ 0.1489
0+49 ~
Free | Spam P(Free|Spam)
2045
140
2042
NCLY | o ~ 04681
3+49 ~

The probability of a configuration in this model is calculated in the following way:

P(Free =Y, Caps = N, Spam = N) = ©))
= P(Spam = N)-P(Caps = N|Spam = N) - P(Free = Y |Spam = N)
0.53 - 0.9245 - 0.0189 ~ 0.0093

12.1 Computational Tasks in the Naive Bayes Model

We will cover the computational tasks in more details within the Bayesian Network in general.

1. Evaluation

The probability of a complete configuration is calculated using the Naive Bayes assumption and table lookups. The
formula (8) illustrates probability evaluation of a complete configuration: P(Free =Y, Caps = N, Spam = N)

This example illustrates the fact that the Naive Bayes model is less amenable to the sparse date problem than the
joint distribution problem, in which the probability of this same configuration was estimated to be 0.

2. Simulation

Configurations are sampled by first sampling the output variable based on its table, and then the input variables
using the corresponding conditional tables.

3. Inference

3.a) Marginalization. If the partial configuration includes the output variable, it can be shown that the marginal
probability can be calculated using the following formula:

P(V1 :zl,...,Vk:xk):
P(Vl = Z‘l)P(‘/g = Z‘Q‘Vl = J)1)P(V3 = $3|V1 = 1‘1) e
P(Vk :xk“/l :.’L'l)



CSCI 4152/6509 Lecture 10 p.5

3.b) Conditioning. Example:

P(S=N,F=Y,C =N)

P(S=N|F=Y,C=N) = FFT 0=

Using Naive Bayes assumption:

P(S=N,F=Y,C=N)=
= P(S=N)P(F=Y|S=N)P(C=N|S=N)
= 0.53-0.9245 - 0.0189 ~ 0.0093

P(F =Y,C = N) = (by definition)
P(S=Y,F=Y,C=N)+P(S=N,F=Y,C =N)
P(S=Y)P(F =Y|S =Y)P(C = N|S = Y) + 0.0093
= 0.47-0.5319 - 0.1489 + 0.0093

0.0465

%

Finally,

0.0093 _
0.0465

P(S=N|F=Y,C=N) =

3.c) Completion in the Naive Bayes Model

Slide notes:
3.c) Completion in the NB Model
— Classification is the completion task:

argmaxP(S =s|F=Y,C = N)
se{Y,N}

— It works out that we calculate:
P(S=Y,F=Y,C=N) = P(S) - P(F|S) - P(C|S)
and

P(S=N,F=Y,C=N) =P(S)-P(F|S) - P(C|5)

and choose the larger value.

Example:

by definition P(S =S, F = Y, C= N)
argmaxP(S =s|F=Y,C=N) " "= arg max
se{Y,N} | s P(F=Y,C=N)
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P(F =Y,C = N) does not depend on s, hence

=argmaxP(S =5 F=Y,C=N)

S

and by using Naive Bayes assumption)

=argmaxP(S =s)P(F =Y|S =s)P(C = N|S =5s)

S

A(s)

Fors =Y A(s =Y) ~ 0.0465, and for s = N A(s = N) = 0.0093; hence

argmax A(s) =Y

S

Learning

Maximum Likelihood Estimation: The parameters are estimated using a corpus.

12.2 Number of Parameters

A Naive Bayes model with n variables V7,... V,, is described with tables P(V4), P(V5|V1), P(V3|V4), ..., P(V,,| V).
These tables have constraints since each probability distribution must sum up to 1. If we assume that each variable
can take one of m distinct values, then the number of parameters and constraints in required tables are:

parameters constraints
table P(V7) m 1
table P(V5|V1) m? m
table P(V3|V1) m® m Hence, the number of free parameters is m + (n — 1)m? —
table P(V,,|V1) m? m
sum m+n—1)m?> 1+ n—1)m

1 — (n — 1)m = O(m?>n), which is not very large since the joint distribution model requires O(m™) parameters.

Pros and Cons of the Naive Bayes Model

Some advantages (pros) of the Naive Bayes Model are:

Efficiency: It is a relatively efficient method, with good running-time complexity for inference and small memory
size.

No sparse data problem: Since the number of parameters is relatively small, there is usually sufficient data to train
all parameters, and smoothing is relatively easy.

Performance: Even though it has a very strong and unrealistic independence assumption, the model frequently
shows surprisingly good classification performance.

Some disadvantages (cons) of the Naive Bayes Model are:

Too strong independence assumption: The strong independence assumption often affects performance for many
domains. In other words, the model is too simplistic.

Only one “output” variable: The model is designed as a classification problem; i.e., it contains only one hidden, or
output, variable; which value can be inferred. Many problems require that we infer the value of multiple variables,
and the only way to apply Naive Bayes model to those problems is to build separate models for all hidden variables.
In that case we would not capture any inter-dependencies among those variables.
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Additional Notes on Naive Bayes Model

— Text classification: how do we choose features?
— Two options:

— Bernoulli Naive Bayes — binary variables for each word

— Multinomial Naive Bayes — variable for each word position
— Zero-probability problem

— Smoothing using 41 or similar addition (Laplace smoothing)

The Bernoulli Naive Bayes model uses a variable for each distinct word in the vocabulary, with values 1 if the word
is present, or 0 if not. Training is done on per-document basis. The name comes from the Bernoulli distribution as
defined in the probability theory, which is distribution of a random variable having value 1 with a probability p and
0 with the probability ¢ = 1 — p. This is the distribution we use to model probability that a word is in a document
of a given class.

The Multinomial Naive Bayes model uses a variable for each word position, and the value of the variable is the
actual word. All conditional probabilities for these variables are the same, but they are collected in one large table.
The model is trained on one ‘mega-document’; i.e., a document with concatenated all documents of a class. The
model is named after the Multinomial distribution in the probability theory, which models the outcome of n repeated
trials, where each trial can have one of k different results, with probabilities p;, ps, ..., px. In the Multinomial
Naive Bayes model, n is the length of a text, and individual trials are word positions, where words are taken from a
vocabulary of size k.

12.3 Spam Example Summary

Let us take a look at a summary of the Spam Example for the three discussed models: Joint Distribution, Fully
Independent, and Naive Bayes model. In all three models, the initial training data was the same, represented in the
following table:

Free | Caps | Spam | Number of messages
20
1

0
20

3

2
49
Total: 100

ZZZZARAKRAKK
ZzZ<k<ZZ~<X
ZHKZKZKZK

The Joint Distribution Model is represented using a joint probability distribution table, learned from the training
data as:

Free | Caps | Spam | Number of messages P
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00
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As an example, the conditional probability P(Spam = Y |Free = Y, Caps = N) would be evaluated as:

P(Spam =Y |Free =Y, Caps = N) =
P(Spam =Y, Free =Y, Caps = N)
P(Free =Y,Caps = N)
P(Spam =Y, Free =Y, Caps = N)
P(Spam =Y, Free =Y, Caps = N) + P(Spam = N, Free =Y, Caps = N)
0.05

= —— =1.00
0.05 4 0.00

The Fully Independent Model is represented using a set of independent probability tables for all variables, learned
from the training data as:

Free | P(Free) Caps | P(Caps) Spam | P(Spam)
Y | B0 —026 , Y | IS _ (44 and Y | 22042 047
204342449 _ 54042449 _ 14043449 _

Using the same example, the conditional probability P(Spam = Y |Free =Y, Caps = N) would be evaluated as:

P(Spam =Y |Free =Y, Caps = N) =
P(Spam =Y, Free =Y,Caps = N)
P(Free =Y, Caps = N)
P(Spam =Y) -P(Free =Y ) - P(Caps = N)
P(Free =Y) -P(Caps = N)
= P(Spam=Y)=0.47

The Naive Bayes Model is represented using a set of conditional probability tables, learned from the training data
as:

Caps | Spam P(Caps|Spam) Free | Spam P(Free|Spam)

20420 2045

Spam | P(Spam) Y Y soi3 5073 ~ 0.8511 Y Y Sorers07s ~ 0.5319
201542042 _ 143 140

Y [ 047 || Y | N | s~ 00755 || Y | N | il & 0.0189
140+3449 _ 542 2042

N | B 053 || N | Y | g2~ 00480 || N | Y | 5202 0.4681
0449 3449

Using the same example, the conditional probability P(Spam = Y |Free =Y, Caps = N) would be evaluated as:

P(Spam =Y |Free =Y, Caps = N) =
P(Spam =Y, Free =Y, Caps = N)
P(Free =Y,Caps = N)
P(Spam =Y, Free =Y,Caps = N)
P(Spam =Y, Free =Y, Caps = N) + P(Spam = N, Free =Y, Caps = N

We first calculate:

P(Spam =Y, Free =Y,Caps = N) =
P(Spam =Y) - P(Free =Y |Spam =Y) - P(Caps = N|Spam =Y")

0.47-0.5319 - 0.1489 ~ 0.047248677
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and

P(Spam = N,Free =Y,Caps = N) =
P(Spam = N) - P(Free = Y'|Spam = N) - P(Caps = N|Spam = N)
= 0.53:0.0189-0.9245 ~ 0.009260717

so finally, based on the above equation,

P(Spam =Y |Free =Y,Caps = N) =
P(Spam =Y, Free =Y, Caps = N)
P(Spam =Y, Free =Y, Caps = N) + P(Spam = N, Free =Y, Caps = N
0.047248677

= ~ 0. 120752
0.047248677 4+ 0.009260717 0-83612075
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