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Previous Lecture

Evaluation methods for Text Classification:
▶ underfitting and overfitting
▶ training error, train and test, n-fold
cross-validation

Text Clustering

Discussion about evaluation methods for classifiers

Similarity-based Text Classification

CNG classification method
Edit distance:

▶ introduction, properties, dynamic programming
approach, example, algorithm
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Part III: Probabilistic Approach to NLP

Logical versus Plausible Reasoning

As a part of AI (Artificial Intelligence), NLP follows two main
approaches to computer reasoning, or computer inference:

1. logical reasoning

▶ known also as classical, symbolic, knowledge-based AI
▶ monotonic: once conclusion drawn, never retracted
▶ certain: conclusions certain, given assumptions

2. plausible reasoning

▶ examples: probabilistic, fuzzy logic, neural networks
▶ non-monotonic
▶ uncertain
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Plausible Reasoning

How to combine ambiguous, incomplete, and contradicting
evidence to draw reasonable conclusions?

Typical approach: make plausible inference of some hidden
structure from observations

Examples:

Observations (input) Hidden Structure (output)
symptoms → illness
pixel matrix → object, relations
speech signal → phonemes, words
word sequence → meaning

sentence → parse tree
word sequence → POS tags, names, entities

words in e-mail Subject: → Is message spam? Yes/No
text → text category (class)
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Probabilistic NLP as a Plausible Reasoning Approach

Regular expressions and finite automata are example of logical
or knowledge-based approach to NLP

Plausible approaches to NLP:

1. Probabilistic: use of Theory of Probability, also known as
stochastic or statistical NLP

▶ Alternative plausible approaches, examples:
2. neural networks,
3. kernel methods,
4. fuzzy logic, fuzzy sets,
5. Dempster-Shafer theory
6. rough sets,
7. default logic, . . .
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Review of Basics of Probability Theory

You should have this background from previous courses; this is
just a review,

▶ discussed a bit in the textbook: [JM] 5.5, and [MS] 2.1

Simple event or basic outcome

▶ e.g., rolling a die, choosing a letter

Event space: the set of all outcomes, usually denoted Ω

Event or outcome is a set of simple events or basic outcomes

In other words event is any subset of Ω; i.e., A ⊆ Ω

Each event is associated with a probability, which is a number
between 0 and 1, inclusive: 0 ≤ P(A) ≤ 1
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Probability Examples

P(“rolling a 6 with a die”) = 1/6

Choosing a letter of English alphabet:

▶ If we choose uniformly: P(‘a’) = 1/26 ≈ 0.04
▶ Choosing from a text: P(‘a’) ≈ 0.08
▶ Remember our output from “Tom Sawyer”:

35697 0.1204 e

28897 0.0974 t

23528 0.0793 a

23264 0.0784 o

20200 0.0681 n

...
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Probability Axioms

(Nonnegativity) P(A) ≥ 0, for any event A

(Additivity) for disjoint events A and B, i.e., if A,B ⊂ Ω and
A ∩B = ∅, then
P(A ∪B) = P(A) + P(B)
or, more generally,
P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + . . .

(Normalization) P(Ω) = 1, where Ω is the entire sample
space.

Some consequences of the above axioms are:
P(∅) = 0 and P(Ω− A) = 1− P(A)
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Independent and Dependent Events

Independent events A and B (definition):
P(A,B) = P(A) · P(B)

Use of comma in: P(A,B) = P(A ∩B)

Example: choosing two letters in text

1 Choosing independently:
P(‘t’) = 0.1,P(‘h’) = 0.07,P(‘t’, ‘h’) = 0.007

2 Choosing two consecutive letters (dependent events):
P(‘t’, ‘h’) = 0.04
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Conditional Probability

Conditional probability

P(A|B) =
P(A,B)

P(B)

Expressing independency using conditional probability

Two events A are B are independent if and only if:

P(A|B) = P(A)

This is an alternative definition of independent events.
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Annotation with More Events

There is a bit of flexibility in using notation; e.g.,

P(A,B,C) = P(A ∩B ∩ C)

P(A|B,C) = P(A|B ∩ C)

P(A,B,C|D,E, F ) = P(A ∩B ∩ C|D ∩ E ∩ F )

and so on.

Three independent events: P(A,B,C) = P(A)P(B)P(C)

Conditionally independent events

P(A,B|C) = P(A|C) · P(B|C)
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Bayes’ Theorem

Bayes’ theorem (one form):

P(A|B) =
P(B|A) · P(A)

P(B)

The second form is based on breaking the set B into disjoint
sets B = A1 ∪ A2 ∪ . . .:

P(Ai|B) =
P(B|Ai) · P(Ai)

P(B)
=

P(B|Ai) · P(Ai)∑
i P(B|Ai)P(Ai)
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Bayesian Inference and Generative Models

We will use Bayesian Inference on Generative Models

Generative Models, also known as Forward Generative Models

One way of representing knowledge with a probabilistic model

↓ world

truth ↓
↓ sensor

evidence ↓
observed measurement
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Notation Remark: max and argmax

max is the maximum value of a function

arg max is an argument value for which function achieves the
maximum

4 = arg max f(x)
x

3 = max f(x)
x y = f(x)
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Bayesian Inference: Using Bayes’ Theorem

Bayesian inference is a principle of combining evidence

conclusion = arg max
possible truth

P (possible truth|evidence)

= arg max
possible truth

P (evidence|possible truth)P (possible truth)

P (evidence)

= arg max
possible truth

P (evidence|possible truth)P (possible truth)

application to speech recognition: acoustic model and language model
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Bayesian Inference: Speech Recognition Example

evidence → sound

possible truth → utterance (words spoken)

our best guess about utterance → utterance*

utterance* = arg max
all utterances

P (utterance|sound)

= arg max
all utterances

P (sound|utterance)P (utterance)

P (sound)

= arg max
utterance

P (sound|utterance)P (utterance)
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Probabilistic Modeling

How do we create and use a probabilistic model?
Model elements:

▶ Random variables
▶ Model configuration (Random configuration)
▶ Variable dependencies
▶ Model parameters

Computational tasks
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Random Variables

Random variable V , defining an event as V = x for
some value x from a domain of values D; i.e., x ∈ D

V = x is usually not a basic event due to having
more variables

An event with two random variables:
V1 = x1, V2 = x2
Multiple random variables: V = (V1, V2, ..., Vn)
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Model Configuration (Random Configuration)

Full Configuration: If a model has n random
variables, then a Full Model Configuration is an
assignment of all the variables:

V1 = x1, V2 = x2, . . . , Vn = xn

Partial configuration: only some variables are
assigned, e.g.:

V1 = x1, V2 = x2, . . . , Vk = xk (k < n)
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Probabilistic Modeling in NLP

Probabilistic Modeling in NLP is a general

framework for modeling NLP problems using

random variables, random configurations, and an

effective ways to reason about probabilities of

these configurations.
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Variable Independence and Dependence

Random variables V1 and V2 are independent if
P(V1=x1, V2=x2) = P(V1=x1)P(V2=x2) for all
x1, x2
or expressed in a different way:
P(V1=x1|V2=x2) = P(V1=x1) for all x1, x2, x3.

Random variables V1 and V2 are conditionally
independent given V3 if, for all x1, x2, x3:
P(V1=x1, V2=x2|V3=x3) =
P(V1=x1|V3=x3)P(V2=x2|V3=x3)

or
P(V1=x1|V2=x2, V3=x3) = P(V1=x1|V3=x3)
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Computational Tasks in Probabilistic Modeling

1. Evaluation: compute probability of a complete
configuration

2. Simulation: generate random configurations

3. Inference: has the following sub-tasks:

3.a Marginalization: computing probability of
a partial configuration,

3.b Conditioning: computing conditional
probability of a completion given an
observation,

3.c Completion: finding the most probable
completion, given an observation

4. Learning: learning parameters of a model from data.
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Illustrative Example: Spam Detection

the problem of spam detection

a probabilistic model for spam detection; random variables:

Caps = ‘Y’ if the message subject line does not contain
lowercase letter, ‘N’ otherwise,

Free = ‘Y’ if the word ‘free’ appears in the message
subject line (letter case is ignored), ‘N’ otherwise,
and

Spam = ‘Y’ if the message is spam, and ‘N’ otherwise.

one random configuration represents one e-mail message
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Random Sample

Data based on sample of 100 email messages

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

What are examples of computational tasks in this example?
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Joint Distribution Model

Probability of each complete configuration is
specified; i.e., the joint probability distribution:

P(V1=x1, ..., Vn=xn)

If each variable can have m possible values, the
model has mn parameters

The model is a large lookup table: For each full
configuration x = (V1=x1, ..., Vn=xn), a parameter
px is specified such that

0 ≤ px ≤ 1 and
∑
x

px = 1
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Example: Spam Detection (Joint Distribution Model)

MLE — Maximum Likelihood Estimation of probabilities:

Free Caps Spam Number of messages p
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00
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Computational Tasks in Joint Distribution Model:

1. Evaluation

Evaluate the probability of a complete configuration
x = (x1, ..., xn).

Use a table lookup:

P(V1=x1, ..., Vn=xn) = p(x1,x2,...,xn)

For example:

P(Free = Y,Caps = N, Spam = N) = 0.00

This example illustrates the sparse data problem

Inferred that the probability is zero since the configuration was
not seen before.
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2. Simulation (Joint Distribution Model)
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2. Simulation (Joint Distribution Model)

Simulation is performed by randomly selecting a configuration
according to the probability distribution in the table

Known as the “roulette wheel” method

1. Divide the interval [0, 1] into subintervals of the lengths: p1, p2,
. . . , pmn : I1 = [0, p1), I2 = [p1, p1 + p2),
I3 = [p1 + p2, p1 + p2 + p3), . . . Imn = [p1 + p2 + . . .+ pmn−1, 1)

2. Generate a random number r from the interval [0, 1)

3. r will fall exactly into one of the above intervals, e.g.:
Ii = [p1 + . . .+ pi−1, p1 + . . .+ pi−1 + pi)

4. Generate the configuration number i from the table

5. Repeat steps 2–4 for as many times as the number of
configurations we need to generate
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Joint Distribution Model: 3. Inference

3.a Marginalization

Compute the probability of an incomplete configuration
P(V1=x1, ..., Vk=xk), where k < n:

P(V1=x1, . . . , Vk=xk)

=
∑
yk+1

· · ·
∑
yn

P(V1=x1, . . . , Vk=xk, Vk+1=yk+1, . . . , Vn=yn)

=
∑
yk+1

· · ·
∑
yn

p(x1,...,xk,yk+1,...,yn)

Implementation: iterate through the lookup table and
accumulate probabilities for matching configurations
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Joint Distribution Model: 3.b Conditioning

Compute a conditional probability of assignments of some
variables given the assignments of other variables; for example,

P(V1=x1, . . . , Vk=xk|Vk+1=y1, ..., Vk+l=yl)

=
P(V1=x1, . . . , Vk=xk, Vk+1=y1, ..., Vk+l=yl)

P(Vk+1=y1, ..., Vk+l=yl)

This task can be reduced to two marginalization tasks

If the configuration in the numerator happens to be a full
configuration, that the task is even easier and reduces to one
evaluation and one marginalization.
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Joint Distribution Model: 3.c Completion

Find the most probable completion (y∗k+1, ..., y
∗
n) given a partial

configuration (x1, ..., xk).

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

P(V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(V1=x1, . . . , Vk=xk, Vk+1=yk+1, ..., Vn=yn)

= arg max
yk+1,...,yn

p(x1,...,xk,yk+1,...,yn)

Implementation: search through the model table, and from all
configurations that satisfy assignments in the partial configuration, chose
the one with maximal probability.
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Joint Distribution Model: 4. Learning

Estimate the parameters in the model based on given data

Use Maximum Likelihood Estimation (MLE)

Count all full configurations, divide the count by the total number of
configurations, and fill the table:

p(x1,...,xn) =
#(V1=x1, . . . , Vn=xn)

#(∗, . . . , ∗)

With a large number of variables the data size easily becomes insufficient
and we get many zero probabilities — sparse data problem
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Drawbacks of Joint Distribution Model

memory cost to store table,

running-time cost to do summations, and

the sparse data problem in learning (i.e., training).

Other probability models are found by specifying
specialized joint distributions, which satisfy certain
independence assumptions.
The goal is to impose structure on joint distribution
P(V1=x1, ..., Vn=xn). One key tool for imposing
structure is variable independence.
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Fully Independent Model

• Assumption: all variables are independent

P(V1=x1, ..., Vn=xn) = P(V1=x1) · · ·P(Vn=xn).

• Efficient model with a small number of parameters:
O(nm)
• Drawback: usually a too strong assumption
• Fully independent model for the Spam example:

P(Free,Caps, Spam) = P(Free) · P(Caps) · P(Spam)
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Fully Independent Model: [4.] Learning

Spam example:
Free P(Free)

Y 20+1+5+0
100

= 0.26

N 20+3+2+49
100

= 0.74

and similarly,

Caps P(Caps)

Y 20+1+20+3
100

= 0.44

N 5+0+2+49
100

= 0.56

and

Spam P(Spam)

Y 20+5+20+2
100

= 0.47

N 1+0+3+49
100

= 0.53

Hence, in this model any message is a spam with probability 0.47, no
matter what the values of Caps and Free are.
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Evaluation Example

As an example of evaluation, the probability of configuration
(Caps = Y, Free = N, Spam = N) in the fully independent model is:

P(Free = Y,Caps = N, Spam = N) =

= P(Free = Y ) · P(Caps = N) · P(Spam = N) =

= 0.26 · 0.56 · 0.53
= 0.077168 ≈ 0.08
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Fully Independent Model: 2. Simulation

For j = 1, ..., n, independently draw xj according to
P(Vj=xj) using “roulette wheel” for one variable

Conjoin (x1, ..., xn) to form a complete configuration.
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3. Inference in Fully Independent Model

3.a Marginalization in Fully Independent Model
The probability of a partial configuration
(V1=x1, . . . , Vk=xk) is

P (V1=x1, . . . , Vk=xk) = P (V1=x1) · . . . · P (Vk=xk)

This formula can be obvious, but it can also be derived.
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Derivation of Marginalization Formula

P(V1=x1, ..., Vk=xk) =
∑
yk+1

· · ·
∑
yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

=
∑
yk+1

· · ·
∑
yn

P(V1=x1) · · ·P(Vk=xk)P(Vk+1=yk+1) · · ·P(Vn=yn)

= P(V1=x1) · · ·P(Vk=xk)

∑
yk+1

P(Vk+1=yk+1)

∑
yk+2

· · ·

[∑
yn

P(Vn=yn)

]
= P(V1=x1) · · ·P(Vk=xk)

∑
yk+1

P(Vk+1=yk+1)

 · · ·

[∑
yn

P(Vn=yn)

]
= P(V1=x1) · · ·P(Vk=xk)
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A Note on Sum-Product Computation

∑
a

∑
b

f(a)g(b) =
∑
a

f(a)

(∑
b

g(b)

)
(because f(a) is a constant for summation over b)

=

(∑
b

g(b)

)
·

(∑
a

f(a)

)
(because

∑
b

g(b) is a constant for sumation over a)

=

(∑
a

f(a)

)
·

(∑
b

g(b)

)
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Similar Note for Max-Product Computation

If we assume that f(a) ≥ 0 and g(b) ≥ 0, the same rule applies for maxa and
maxb:

max
a

max
b

f(a)g(b) =

= max
a

f(a)

(
max

b
g(b)

)
(because f(a) is a constant for maximization over b)

=

(
max

b
g(b)

)
·
(
max

a
f(a)

)
(because max

b
g(b) is a constant for maximization over a)

=
(
max

a
f(a)

)
·
(
max

b
g(b)

)
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3.c Completion in Fully Independent Model

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(Vk+1=yk+1) · · ·P(Vn=yn)

=

[
arg max

yk+1

P(Vk+1=yk+1)

]
· · ·
[
arg max

yn

P(Vn=yn)

]
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Joint Distribution Model vs. Fully Independent

Model

Fully Independent Model addresses some issues of
the Joint Distribution Model

Efficient and small number of parameters

However: too strong assumption, no structure

Too trivial to be usable
Better method: Structured probability models

▶ compromise between no dependence and too much
dependence
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