Natural Language Processing CSCI 4152/6509 — Lecture 3 Finite Automata Review

Instructors: Vlado Keselj Time and date: 16:05 – 17:25, 11-Sep-2024 Location: Carleton Tupper Building Theatre C

- Ambiguities at different levels of NLP
- About course project
 - Deliverables: P0, P1, P, R
 - Project report structure
 - Choosing project topic

Part II: Stream-based Text Processing

- Considering text as a stream of characters, words, and lines of text
- Review of Finite Automata and Regular Expressions
- Review of Unix-style text processing
- Introduction to Perl
- Morphology fundamentals
- N-grams
- Reading: Chapter 2, Jurafsky and Martin

Finite-State Automata

- Regular Expressions and Regular Languages
- Regular Languages can be described using
 - Regular Expressions
 - Regular Grammars
 - Finite-State Automata (DFA and NFA)
- DFA = Deterministic Finite Automaton
- NFA = Non-deterministic Finite Automaton
- also referred to as Finite-State Machines

Typical Low-level NLP Tasks

- Pre-processing text
- Tokenization
- Sentence Segmentation
- Morphological Processing (e.g., Stemming)
- "Vectorizing" Text
- Information Extraction (simpler cases)
- and so on

Example Task: Removing HTML Tags

3

イロト イヨト イヨト イヨト

Deterministic Finite Automaton

- Formally defined as a 5-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q is a set of states
 - Σ is an input alphabet
 - $\delta: Q \times \Sigma \to Q$ is a transition function
 - $q_0 \in Q$ is the start state
 - $F \subset Q$ is a set of final or accepting states
- Graph representation is frequently used
- Consider finite automata for sets of strings: baaa...a! ha-ha-...-ha up-up-down-up-down-up-up-...down

A = A = A

DFA for language baa...a! using a graph

3

イロト イ理ト イヨト イヨト

Consider DFA for: ha-ha-...-ha

3

イロト 不得下 イヨト イヨト

- Formally, as sets and functions (mappings)
- As a transition table
- As a graph
- Consider the DFA for the language: baaa...a!

DFA for language baa...a! using a table

3

Non-deterministic Finite Automaton

- Formally: $(Q, \Sigma, \delta, q_0, F)$
- However, the transition function is different: $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, and P(Q) is the set of all subsets of Q (powerset)
- A string is accepted if there is *at least* one path leading to an accepting state
- Consider: /.*ing/ or /jan|jun|jul/

NFA for /.*ing/ or /jan|jun|jul/

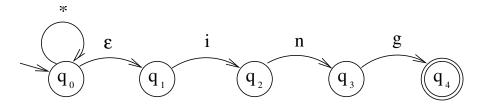
3

イロト イ団ト イヨト イヨト

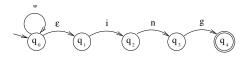
Another NFA and DFA Example

- Write a DFA that accepts any sequence over alphabet Σ = {a, b, ..., z} that ends with 'eses', like 'theses' or 'parentheses'.
- Write an NFA that accepts the same language.

Implementing NFAs

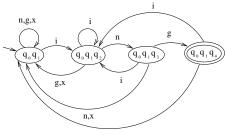

- DFA easy to implement, NFA not straightforward
- Two approaches for NFA: backtracking and translation to DFA
- Using backtracking usually inefficient solution
- Translating into a DFA
 - Sets of reachable NFA states become states of new DFA

NFA to DFA Translation


- Start with NFA and create new equivalent DFA
- DFA states are sets of NFA states
- If q_0 is the start NFA state, then the start DFA state is **Closure**(q_0)
- Closure(A) of a set of NFA states A is a set A with all states reachable via $\varepsilon\text{-transitions from }A$
- Fill DFA transition table by keeping track of all states reachable after reading next input character
- Final states in DFA are all sets that contain at least one final state from NFA

NFA to DFA Example

• Let us go back to the example done previously:


B ▶ < B ▶

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Final DFA

State	i	n	g	other letters)
				(not i, n, or g)
$\rightarrow \{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0,q_1\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0,q_1\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_1\}$
F: $\{q_0, q_1, q_4\}$	$\{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_1\}$

n,g,x

3

ヘロト 人間 ト くほ ト くほ トー