Lab 5 p.1

Faculty of Computer Science, Dalhousie University 27-Oct-2025
CSCI 4152/6509 — Natural Language Processing

Lab 5: Python NLTK Tutorial 1

Lab Instructor: Aditya Joshi and Tymon Wranik-Lohrenz
Location: Mona Campbell 1201 (8:35)/Goldberg CS 134 (14:35)
Time: Monday, 08:35-09:55 and 14:35-15:55

Notes author: Dijana Kosmajac, Vlado Keselj

Python NLTK Tutorial 1

Lab Overview

Introduction to Natural Language Toolkit (NLTK)
— Python quick overview;

Lexical analysis: Word and text tokenizer;

— n-gram and collocations;

NLTK corpora;

Naive Bayes classifier with NLTK.

Files to be submitted:

1. lab5-1ist_merge.py

2. lab5-stop_word_removal.py

3. lab5-explore_corpus.py

4. lab5-movie_rev_classifier.py

This is the first Python tutorial in the course. We assume that many students have programmed in Pythob before, so
to make it more interesting and novel, we will use Python in the context of some NLP tasks, and some NLP libraries.
We will use the NLTK Python library in the tutorial. NLTK is named as an abbreviation of the Natural Language
ToolKit.

What is NLTK?

Natural Language Toolkit (NLTK) is a popular platform for building Python programs to work with human language
data; i.e., for Natural Language Processing. It is accompanied by a book that explains the underlying concepts
behind the language processing tasks supported by the toolkit. NLTK is intended to support research and teaching
in NLP or closely related areas, including empirical linguistics, cognitive science, artificial intelligence, information
retrieval, and machine learning.

We will start with a quick Python introduction, but if you would like to learn more about Python, there are many
resources on the Web and books. For example, a simple beginner Python tutorial can be found at:
https://www.tutorialspoint.com/python/index.htm or
https://www.w3schools.com/python

As in previous labs, we will login to the server t imberlea for this lab, which has the NLTK installed. If you want
to install NLTK to your local machine, you can refer to the following URLs:
http://www.nltk.org/install.html

http://www.nltk.org/data.html

In this lab we will explore:

October 26, 2025, CSCI 4152/6509 http://web.cs.dal.ca/~vlado/csci6509/

https://www.tutorialspoint.com/python/index.htm
https://www.w3schools.com/python
http://www.nltk.org/install.html
http://www.nltk.org/data.html
http://web.cs.dal.ca/~vlado/csci6509/

Lab5p.2 CSCI 4152/6509

— Python quick overview;

Lexical analysis: Word and text tokenizer;
— n-gram and collocations;

NLTK corpora;

Naive Bayes classifier with NLTK.

Python overview

Basic syntax

Identifiers: Python identifier is a name used to identify a variable, function, class, module, or other object. An
identifier starts with a letter A to Z or a to z, or an underscore (_) followed by zero or more letters, underscores and
digits (0 to 9). Other characters are not allowed in identifiers, so be careful not to start variables as in Perl with
special characters @, $, or %. The identifiers are case-sensitive, so for example, Variable and variable are
two different identifiers.

Lines and Indentation: Python provides no braces to indicate blocks of code for class and function definitions
or flow control. Blocks of code are denoted by line indentation, which is rigidly enforced. The number of spaces
in the indentation is variable, but all statements within one block must be indented the same amount. Use simple
space characters for indentation, since using ‘tab’ characters may be interpreted in different way by different editors
regarding the amount of indentation.

Quotes (string literals): Python accepts single (), double (") and triple (* /¥ or "" ") quotes to denote string
literals, as long as the same type of quote starts and ends the string. Example:

word = "word’
sentence = "This is a sentence."
paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Single and double quotes are used in the same way. The only reason why we may prefer one versus another is to
avoid using backslash in case that one of the quotes appear in a string. The single and double quotes cannot be use
for multi-line strings, but triple quotes (with single or double quotes) can, and that it their main purpose.

Data types, assigning and deleting values: Python has five standard data types:

numbers;

— strings;
lists;

tuples;
dictionaries.

Python variables do not need explicit declaration, similarly to Perl variables. The declaration happens automati-
cally when you assign a value to a variable. The equal sign (=) is used to assign values to variables. The operand
to the left of the = operator is the name of the variable and the operand to the right of the = operator is the value
stored in the variable. For example:

counter = 100 # An integer assignment
miles = 1000.0 # A floating point
name = "John" # A string

CSCI 4152/6509 Lab5p.3

Lists. Lists can contain a list or sequence of objects in Python. They are similar to lists (or arrays) in Perl. Python
uses brackets (‘[” and ‘]’) to denote lists.

print (len([1, 2, 31)) # 3 - length
print(([(1, 2, 31 + [4, 5, 6]) # [1, 2, 3, 4, 5, 6] - concatenation
print ([7Hi!’] * 4) # [7Hi!7, THil’, THil’, THi!’]
- repetition
print (3 in [1, 2, 31) # True - checks membership

for x in [1, 2, 3]: print(x) # 1 2 3 - iteration

Some of the built-in functions useful in work with lists are max, min, cmp, len, 1ist (converts tuple to list), etc.
Some of the list-specific functions are 1ist .append, 1ist.extend, list.count, etc.
Tuples Tuples are similar to lists, in the sense that they also contain sequences of objects. One difference is that

tuples are immutable; i.e., cannot be changed once created, and because of that they are more efficient. Tuples are
denoted by parentheses (‘(" and °)’) instead of brackets.

tupl = ('physics’, ’'chemistry’, 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7);

print (tupl[0]) # prints: physics

print (tup2[1:5]) # prints: [2, 3, 4, 5]

Basic tuple operations are same as with lists: length, concatenation, repetition, membership and iteration.

Dictionaries. Dictionaries are structures that map elements called keys to other elements called values. Hence
they are similar to associative arrays in Perl, and they are also called hashes or maps in some languages.

dict = {’Name’:’Zara’, ’'Age’:7, ’'Class’:’'First’}
dict[’Age’] = 8 # update existing entry
dict[’School’] = "DPS School" # Add new entry

del dict [’ School] # Delete existing entry

List comprehension. Comprehensions are constructs that allow an easy way to build lists from other lists, and
some other similar constructs. Python 2.0 introduced list comprehensions and Python 3.0 comes with dictionary
and set comprehensions. The following is an example of list comprehension:

a_list = [1, 2, 9, 3, 0, 4]
squared_ints = [e*x*x2 for e in a_list]

print (squared_ints) # [1, 4, 81, 9, 0, 16]
This is same as:

a list = [1, 2, 9, 3, 0, 4]

squared_ints = []

for e in a_list:
squared_ints.append (exx2)

print (squared_ints) # [1, 4, 81, 9, 0, 16]

Lab5p4 CSCI 4152/6509

Now, let us see an example with the ‘if” statement. The example shows how to filter out non integer types from
mixed list and apply operations.

a_list = [1, "4', 9, 'a’', 0, 4]
squared_ints = [exx2 for e in a_list if type(e) is int]
print (squared_ints) # [1, 81, 0, 16]

However, if you want to include an ‘if-else’ statement, the arrangement looks a bit different.

a_list = [1, "4', 9, 'a'", 0, 4]
squared_ints = [exx2 if type(e) 1is int else 'x’ for e in a_list]

print (squared_ints) # [1, 'x', 81, 'x', 0, 1le6]

You can also generate dictionary using list comprehension:

a_list = ["1I", "am", "a", "data", "scientist"]
science_1list = { e:1 for i, e in enumerate(a_list) }
print (science_list) # {'1'": 0, 'am’: 1, '"a’': 2, ’'data’: 3,

’scientist’: 4}
. or list of tuples:

a_list = ["I", "am", "a", "data", "scientist"]
science_1list = [(e,1i) for i, e in enumerate(a_list)]

print (science_list) # 1¢'1’, 0), (fam’, 1), (ra’', 2),
)

("data’, 3), ('scientist’, 4)]

String handling

Examples with string operations:

str = '"Hello World!’

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th
print (strf2:1]) # Prints string starting from 3rd character
print (strx2) # Prints string two times

print (str + "TEST") # Prints concatenated string

Other useful functions include join, split, count, capitalize, strip, upper, lower, etc.

Example of string formatting:

print ("My name is %s and age is %d!" % (’Zara’,21))

CSCI 4152/6509 Lab5p.5

10 handling

Python has two major versions which have some significant differences: Python 2 and Python 3. The default version
that we will use is Python 3. One of the differences is the input function, which is called raw_input in Python 2
and is renamed to input in Python 3.

str = input ("Enter your input: ")
print ("Received input is : ", str)

File opening. To handle files in Python, you can use function open. Syntax:
file object = open(file_name [, access_mode] [, buffering])

One of the useful packages for handling tsv and csv files is csv library.

Functions

An example how to define a function in Python:

def functionname (parameters) :
"function_docstring"

function_suite
return [expression]

Running your Code on t imberlea
To run the Python code on t imberlea, you can use the command python. The server t imberlea has both
Python versions installed, 2 and 3, which can be run using the commands python2 .7 or python3. The command
python is the same as python3 command, which can be checked using the command:

python -V
which should produce the output:

Python 3.12.2
or similar, but with clearly version 3 of Python

Python code can be run in two ways, similarly to Perl code. You can either explicitly call Python interpreter with
the name of our script, or call the script directly if you included Python interpreter in the first line of the script:

python mypscript.py

or

./mypscript.py

where mypscript.py looks like:

#!/local/bin/python

print ("Hello World!")

Lab5p.6 CSCI 4152/6509

Step 1. Logging in to server t imberlea

— Login to the server timberlea
As in previous lab, login to your account on the server t imberlea.
— Change directory to csci4152 or csci6509
Change your directory to csci4152 or csci6509, whichever is your registered course. This directory
should have been already created in your previous lab.
— Create the directory 1ab5 and change your current directory to 1ab5:
mkdir labb
cd lab5s

Step 2. Python list, tuple and dictionary example

Create afile called 1ab5-11ist _merge.py. Type the following code and fill in the missing parts (<your name>
and <your_code>). Create a dictionary result, where the keys are the values from some_11ist, and values
from some_tuple. Use list comprehension or a standard loop.

lab5-1list_merge.py

#!/local/bin/python
file: labb5-list_merge.py student: <your name>

some_list = ["first_name", "last_name", "age", "occupation"]
some_tuple = ("John", "Holloway", 35, "carpenter")
result = <your_code>

print (result)

The result should be:

{’first_name’: ’'John’, ’last_name’: ’'Holloway’, ’"age’: 35,
'occupation’: ’carpenter’}

Submit: Submit the program 1lab5-1ist_merge.py using the submit-nlp command.

Step 3. Lexical Analysis: tokenization

We will try now several code samples from NLTK for tokenization. You should type them and run them on
timberlea as an exercise but you are not required to submit the code.

Word tokenization. A sentence or data can be split into words using the method word_tokenize (). You can
try this code example:

eg-word_tokenize.py

#!/local/bin/python
from nltk.tokenize import sent_tokenize, word_tokenize

data = "All work and no play makes jack a dull boy, all work and no play"
print (word_tokenize (data))

If you run the code, you should get the following output:

CSCI 4152/6509 Lab 5p.7

["All", '"work’, "and’, ’'no’, ’'play’, ’'makes’, ’jack’, ’'dull’, ’"boy’, ',’,
"all’, ’"work’, ’'and’, ’'no’, ’'play’]

All of them are words except the comma. Special characters are treated as separate tokens.

Sentence tokenization The same principle can be applied to sentences, if we want to “tokenize” text into sen-
tences. This not usually called tokenization but sentence recognition, or sentence splitting. We will simply change
the method word_tokenize to sent_tokenize and create a text with two sentences:

eg-sent_tokenize.py
#!/local/bin/python

from nltk.tokenize import sent_tokenize, word_tokenize

data = ("All work and no play makes jack dull boy. " +
"All work and no play makes jack a dull boy.")
print (sent_tokenize (data))

The code output should be:

["All work and no play makes jack dull boy.’,
"All work and no play makes jack a dull boy.’]

Storing words and sentences in lists. If you wish to you can store the words and sentences in lists, and try code
like this:

#!/local/bin/python
from nltk.tokenize import sent_tokenize, word_tokenize

data = ("All work and no play makes jack dull boy.\n"+
"All work and no play makes jack a dull boy.")

phrases = sent_tokenize (data)
words = word_tokenize (data)

print (phrases)
print (words)

Step 4. Stop-word removal

English text may contain stop-words, such as ‘the’, ‘is’, or ‘are’, which are very frequent functional words that are
in some NLP applications removed from the text. We will see now how to use NLTK to remove stop-words from a
text. There is no universal list of stop-words for English in NLP research, but the NLTK library contains a list that
may be useful for many applications. Now, we will learn how to remove stop-words using the NLTK.

We start with the code from the previous section with tokenized words, and develop the following program named
lab5-stop_-word_removal.py:

#!/local/bin/python
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords # We imported auxiliary corpus

Lab 5p.8 CSCI 4152/6509

provided with NLTK

data = ("All work and no play makes jack dull boy.\n"+
"All work and no play makes jack a dull boy.")

stopWords = set (stopwords.words (’english’)) # a set of English
words = word_tokenize (data.lower()) # stopwords
wordsFiltered = []

for w in words:
if w not in stopWords:
wordsFiltered. append (w)

print (len (stopWords)) # Print the number of stopwords
print (stopWords) # Print the stopwords
print (wordsFiltered) # Print the filtered text

Note: When you run this code the first time, it is possible that you will get a Python error, including the following
message at the end:

Resource stopwords not found.
Please use the NLTK Downloader to obtain the resource:

>>> import nltk
>>> nltk.download ('’ stopwords’)

You can run these suggested commands in the Python interpreter, or include them in the code, and after the resource
is saved in your local account, the error message will disappear. By running these command, the stopword
resource will be saved in your local account, in the directory ~/nltk_data.

Submit: Create a file named lab5-stop_word_removal.py with the previous code snippet and submit it using the
submit-nlp command.

Step 5. Stemming

We covered the concept of stemming in class. We can recall that stemming is a process of replacing a word with its
stem, which is the main part of the word in a sense, and it is obtained by removing a word suffix. For example, the
stem of the word waiting is wait. NLTK contains an implementation of the most popular stemming algorithm for
English—the Porter stemmer.

To write an example of a program using stemming, we start by defining some words:
words = ["game", "gaming", "gamed", "games"]
We import the Porter stemmer module:

from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize

and stem the words in the list as follows, where we put all components together:

from nltk.stem import PorterStemmer

CSCI 4152/6509 Lab5p9

from nltk.tokenize import sent_tokenize, word_tokenize

words = ["game", "gaming", "gamed", "games"]
ps = PorterStemmer ()

for word in words:
print (ps.stem(word))

You can do word stemming for sentences too; we just need to tokenize them first:

from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize

ps = PorterStemmer ()

sentence = "gaming, the gamers play games"
words = word_tokenize (sentence)

for word in words:
print (word + ":" + ps.stem(word))

There are more stemming algorithms, but the Porter stemmer is the most popular.

Step 6. N-grams
In this step, we will see how to use the NTLK module ngrams to collect word and character n-grams.

Word n-grams

from nltk import ngrams

sentence = "This is my sentence and I want to ngramize it."
n==o
w_6grams = ngrams (sentence.split (), n)

for grams in w_6grams:
print (grams)

Character n-grams

from nltk import ngrams

sentence = "This is my sentence and I want to ngramize it."
n==~6
c_bgrams = ngrams (sentence, n)

for grams in c_b6grams:
print (/' .Jjoin(grams))

Step 7. Exploring corpora

Now, we will use the NLTK corpus module to read the corpus austen-persuasion.txt, included in the
Gutenberg corpus collection, and answer the following questions:

— How many total words does this corpus have?

Lab 5 p.10 CSCI 4152/6509

— How many unique words does this corpus have?
— What are the counts for the 10 most frequent words?

Before we proceed with answering these questions, we will describe an NLTK built-in class which can help us to
get the answers in a simple way.

FreqDist When dealing with a classification task, one may ask how can we automatically identify the words of a
text that are most informative about the topic and genre of the text? One method would be to keep a tally for each
vocabulary item. This is known as a frequency distribution, and it tells us the frequency of each vocabulary item
in the text. It is a “distribution” because it tells us how the total number of word tokens in the text are distributed
across the vocabulary items. NLTK automates this through FregDist. Example:

#!/local/bin/python

from nltk import FregDist
from nltk.tokenize import word_tokenize

data = ("All work and no play makes jack dull boy.\n"+
"All work and no play makes jack a dull boy.")
words = word_tokenize (data)

fdistl = FregDist (words)

print (fdistl.most_common(2)) # Prints two most common tokens
print (fdistl.hapaxes()) # Prints tokens with frequency 1

Type the following code snippet in a file named lab5-explore_corpus.py and fill in the comments with the
answers where indicated. In those comments, you will need to answer questions of home many tokens are in the
novel, how many unique tokens, and which is the third most frequent token.

lab5-explore_corpus.py
from nltk.corpus import gutenberg
from nltk import FregDist

Count each token in austen-persuasion.txt of the Gutenberg collection
list_of_words = gutenberg.words ("austen-persuasion.txt")
fd = FregDist (list_of_words) # Frequency distribution object

print ("Total number of tokens: " + str(fd.N())) # <insert_comment_how_many>
print ("Number of unique tokens: " + str(fd.B())) # <insert_comment_how_many>
print ("Top 10 tokens:") # <insert_comment_which_ is_3rd>

for token, freq in fd.most_common (10) :
print (token + "\t" + str(freq))

To find out more about FregDist refertohttp://www.nltk.org/book/ch01.html section 3.1.

Submit: Create a file named lab5-explore_corpus.py with the previous code snippet and submit it using the
submit-nlp command.
Step 8. Document Classification

In the previous example we have explored corpus, which, you may have noticed, was imported fromnltk.corpus.
NLTK offers a package of pre-trained, labeled corpora for different purposes. The NLTK package also provides

http://www.nltk.org/book/ch01.html

CSCI 4152/6509 Lab5p.11

implementation of several well-known text classifiers, and a wrapper for the use of classifiers from another
well-known library: scikit-learn.

We will use an example of corpus of movie reviews to show how to write a classifier using NLTK, and some basic
steps in evaluating its accuracy. The corpus is taken from nltk.corpus.movie_reviews. The classifier
will be NaiveBayesClassifier. Type the following code in the file named movie_rev_classifier.py
with the following code. Run the code 5 times and report the accuracy for the each run. Explain why each time we
got different accuracy. Write the comments below the code snippet as a Python comment.

#!/local/bin/python

file: lab5-movie_rev_classifier.py student: <your name>
from nltk import FregDist, NaiveBayesClassifier

from nltk.corpus import movie_reviews

from nltk.classify import accuracy

import random

documents = [(list (movie_reviews.words (fileid)), category)
for category in movie_reviews.categories|()
for fileid in movie_reviews.fileids (category)]

random.shuffle (documents) # This line shuffles the order of the documents
all_words = FregDist (w.lower () for w in movie_reviews.words())
word_features = list(all_words) [:2000]

def document_features (document) :

document_words = set (document)
features = {}
for word in word_features:
features [’ contains ({})’.format (word)] = (word in document_words)

return features

featuresets = [(document_features(d), c¢) for (d,c) in documents]
train_set, test_set = featuresets[100:], featuresets[:100] # Split

data to train and test set
classifier = NaiveBayesClassifier.train(train_set)

print (accuracy(classifier, test_set))
<answer_area>

<answer_area>
<answer_area>

Submit: Create a file named lab5-movie_rev_classifier.py with the previous code snippet and submit it using
the submit-nlp command.

This is the end of Lab 5.

	Python NLTK Tutorial 1

