
Lab 3 p.1

Faculty of Computer Science, Dalhousie University 27-Sep-2024
CSCI 4152/6509 — Natural Language Processing

Lab 3: Perl Tutorial 3

Lab Instructor: Sigma Jahan and Tymon Wranik-Lohrenz
Location: Mona Campbell 1108 (10am)/Goldberg CS 134 (4pm)
Time: Friday, 10:04–11:25 and 16:05–17:25
Notes authors: Vlado Keselj and Magdalena Jankowska

Perl Tutorial 3

Lab Overview

– We will finish Perl Tutorial with this Perl Tutorial 3
– In this lab you will learn more about

– arrays
– hashes
– references
– modules

Files to be submitted:

1. lab3-array-examples.pl
2. lab3-test-hash.pl
3. lab3-letter_counter_blanks.pl
4. lab3-out_letters.txt
5. lab3-word_counter.pl
6. lab3-out_word_counter.txt
7. lab3-word_counter2.pl
8. lab3-ngram-output.txt.gz

Step 1. Logging in to server timberlea

As the first step, as in previous labs, you need to login to the server timberlea, create a lab directory, and enter
this directory:

1-a) Login to the server timberlea

First, login via an ssh connection to the server timberlea; e.g., using the program PuTTY from Windows, or ssh
from Mac or Linux.

1-b) Change directory to csci4152 or csci6509

Change your directory to csci4152 or csci6509, whichever is your registered course. This directory should
have been already created in your previous lab.

Create the directory lab3 and change your current directory to be that directory:

1-c) mkdir lab3
1-d) cd lab3

September 26, 2024, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lab 3 p.2 CSCI 4152/6509

This is the directory where you should keep files from this lab.

Arrays

Arrays

– An array is an ordered list of scalar values
– Array variables start with @ when referred in their entirety; examples:

my @animals = ("camel", "llama", "owl");
my @numbers = (23, 42, 69);
my @mixed = ("camel", 42, 1.23);

– When referring to individual elements, use notation such as:

$animals[0] = ’Camel’;
$numbers[4] = 70;
$mixed[1]++;

Arrays or Lists

– Perl arrays are dynamic, also called lists
Perl arrays are dynamic in a sense of extensibility: we can easily make them larger or shorter without a need
to deal with details of memory management. This is why they are also called lists.

– Some examples:

my @a = (); # creating an empty array
$a[5] = 10; # array extended to: ’’,’’,’’,’’,’’,10

– In the above example, simply by assigning a value to $a[5] we are expanding an empty array to an ar-
ray of length 6 (from $a[0] to $a[5]), with automatically filling in empty values of the elements from
$a[0] $a[4]. More precisely, the empty values are actually the so-called undef Perl values, which will
normally be presented as empty strings in a string, or 0 in a numerical expression. If you use the directive
‘use strict;’ or ‘use warnings;’, you would be warned if they are used before assigning a more
concrete value.

$a[-2] = 9; # use of negative index, array is now
’’,’’,’’,’’,9,10

– We can use a negative index to access the elements from the right end; e.g., $a[-1] is the last elements,
$a[-2] the second last, etc.

print $#a; # 5, index of the last element
print scalar(@a); # 6, length of the array
for my $i (0..$#a) { # printing all elements

print $a[$i]."\n"; }

Iterating over Arrays

There are several way of how we can use a for-loop to iterate over an array:

– The loop foreach (or its synonym for)

my @a = ("a", "b", "c");
foreach my $element (@a)
{ print $element; }

CSCI 4152/6509 Lab 3 p.3

– the default variable $_ can be used in the foreach loop

foreach (@a)
{ print; }

– or using for and the index

for (my $i=0; $i<=$#a; $i++) {
print $a[$i]; }

The last example of the for-loop uses C-like form, similar to Java and some other languages. Namely, in the code:

for (my $i=0; $i<=$#a; $i++) {
print $a[$i]; }

part my $i=0 declares a local variable $i and sets it initially to 0. The loop is repeated while $i is less or equal
$#a. The variable $#a is a special variable which denotes the last index of the array @a. Since array indexing
starts generally from 0, it means that $#a is equal to n− 1, where n is the number of elements of array @a. The
part $i++ means that the index $i is incremented by 1 after each iteration of the loop.

More about Array Functions (Operators)

We will now cover a number of the most important predefined Perl functions for working with arrays. The first
function push can be used to add one or more elements to the end of an array, and the function pop can be used to
remove one element from the end of an array:

– push @a,elements; or push(@a,elements);
– Example:

@a = (1,2,3); # @a = (1, 2, 3)
push @a, 4; # @a = (1, 2, 3, 4)

– Built-in function push adds elements at the right end of an array
– Built-in functions generally do not require parentheses, but they are allowed, and sometimes needed to resolve

ambiguities
– pop @a; removes and returns the rightmost element

$b = pop @a; # $b=4, $a = (1, 2, 3)

Functions: shift, unshift, scalar; Array Flattening

Similarly to pop and push, the functions shift and unshift remove and add elements from an array, but from the
left side.

– shift @a; removes leftmost element

@a = (3, 1, 2);
$b = shift @a; # $b=3, $a = (1, 2)

– unshift @a, elements; adds at the left end

unshift @a, 5; # @a = (5, 1, 2)

– Array flattening in Perl: If we try to put an array inside another array in a simple way, Perl will flatten the
arrays into one array. If we really want to have an arrays of arrays, we must use references, which will be
covered later.

Lab 3 p.4 CSCI 4152/6509

@a = ((1,2,3),4,(5)); # @a = (1, 2, 3, 4, 5)
@a = (0,@a,6); # @a = (0, 1, 2, 3, 4, 5, 6)

– scalar @a; returns length of an array
It may be confusing why is a function for the length of array called scalar. There is no actually a predefined
function in Perl dedicated only to array length. The function scalar simply enforces a scalar context on any
expression, and a scalar context on an array forces it to be evaluated to the number of elements of an array.
For this reason, for example, the following code works as shown:

@a = (1,2,3); @b = (’a’, ’b’);
print @a+@b; # prints 5 because @a and @b evaluates to 3 and 2 in

the scalar context

– Remember that you can always used parentheses if you prefer, e.g.:

$n = scalar(@a);
unshift(@a,5);
push(@a,1,2,3); # etc.

Revisiting Function print

– print, like many other functions, can take a list of arguments; e.g.:

print ’Print ’, ’a ’, ’list’, "\n";
prints: Print a list (with a newline at the end)

The arguments are printed sequentially without any spaces
– This is why we have:

@a = (1, 2, 3);
print @a; # prints: 123
print "@a"; # prints: 1 2 3

– The second example uses string interpolation, where an array is expanded by inserting a space between
elements.

– Note that we do not use comma when printing to a file handle:

print STDERR "print can use a file handle\n";
print $fh "printing to a file";

The function chomp is another function that we saw before, which also can take a list as an argument. We saw that
this function removes a trailing new-line character from a given string. If given a list as an argument, as in

chomp @a;

the function removes trailing new-line characters from all elements of @a.

Function sort

– sort @a; sorts an array

@a = sort (5, 1, 2); # @a = (1, 2, 5)

– sort BLOCK @a; can be used to modify sorting criterion
BLOCK decides how to compare two variables $a and $b by returning a result similar to $a-$b; i.e., negative
means $a<$b, zero means $a=$b, and positive means $a>$b, with the final increasing order

CSCI 4152/6509 Lab 3 p.5

– predefined operators <=> (numeric) and cmp (string) are usually useful; some simple examples:

@a = (2, 1, 10, ’b’, ’a’)
@a = sort @a; # string order: 1, 10, 2, a, b
@a = sort {$a<=>$b} @a; # numeric order: a b 1 2 10

(a, b treated as zeros)
@a = sort {$b cmp $a} @a; # inverse string order:

b a 2 10 1

Functions split and join

– split /regex/, string; splits a string into array using a breaking regex pattern

$s = "This is a sentence.";
@a = split /[.]+/, $s; # @a=(’This’,’is’,’a’,

’sentence’)

– join string, array; joins array elements into a string by inserting given string between elements

@a = (1, 2, 3);
$s = join ’ <> ’, @a; # $s = ’1 <> 2 <> 3’

– We can also use parentheses: join(string, array)
– Array arguments can be given directly; e.g., join ’<>’, 1, 2, 3;
– And several arrays are flatten in one array; e.g., join ’<>’, @a, @b;

The above split function breaks the second string argument $s into pieces by separating them with matches obtained
from the regular expression. In this example, the regular expression matches either a space or a period. The same
result on this string would be obtained a more general regular expression such as /\W+/, which could be used for a
simple tokenization.

The function split can take a third, optional argument, LIMIT, which would limit the number of elements that the
string would be broken into.

As another example for the function join, consider a task where we need to concatenate variables $login, $pwd,
$uid, $gid, $gc, $home, and $sh by inserting the a colon ’:’ character between them. It could be achieved
with the command:

$rec=join(’:’,$login,$pwd,$uid,$gid,$gc,$home,$sh);

This example may look familiar to you if you have seen the format of the /etc/passwd file in Linux.

Functions grep and map

– grep expr, @list or grep BLOCK @list returns all elements of a list for which expression or block
evaluates to true, when $_ is given as the element of the list; example

@a = grep {$_>0} @b; # @a gets positive elements
of @b

@foo = grep {!/ˆ#/} @bar; # @foo gets all elements
(strings) from @bar that do not start with

– map expr, @list or map BLOCK @list returns results of expression or block when applied on each
element of the list, where $_ given as element; example

@a = map {lc $_} @b; # @a gets elements of @b in
lowercase letters

– See man perlfunc for more about Perl functions

Lab 3 p.6 CSCI 4152/6509

Step 2: Example with Arrays

– Type and test the following program in a file named ‘lab3-array-examples.pl’

my @animals = ("camel", "llama", "owl");
my @numbers = (23, 42, 69);
my @mixed = ("camel", 42, 1.23);

print "animals are @animals
that is: $animals[0] $animals[1] $animals[2]\n";
print "There is a total of ",$#animals+1," animals\n";
print "There is a total of ",scalar(@animals),

" animals\n";

$animals[5] = ’lion’;
print "animals are @animals\n";

Submit: Submit the program lab3-array-examples.pl using the submit-nlp command.

Associative Arrays (Hashes)

Associative arrays or hashes are structures that associate some scalars called keys with other scalars called values.
They are known in other programming languages also as maps (in Java) and dictionaries (in Python).

Associative Arrays (Hashes)

– Similar to array; associates keys with values
– Examples of use: phonebook, translation dictionary
– English-French translation example:

$fr{’one’} = ’un’; $fr{’two’} = ’deux’;
$fr{’three’} = ’trois’;
$w = ’two’;
print $w." in French is ".$fr{$w};
Output: two in French is deux
$w = ’four’;
print $w." in French is ".$fr{$w};
Output: four in French is
because $fr{’four’} is not assigned

Hashes: Declarations, Functions

– Hashes use % similarly like arrays use @, example

my %p;
my %p = (); # start with empty hash
my %p =

(’one’ => ’first’, ’two’ => ’second’);

– The previous example shows how we can initialize a hash
– exists $hash{$key} checks if a hash element exists
– delete $hash{$key} deletes a hash element

CSCI 4152/6509 Lab 3 p.7

– keys $hash gives an array of all keys
– values $hash gives and array of all values
– Keys and values are not returned in any particular order

Counting Words, Characters, and similar

– Hashes are convenient for counting words or other similar strings
– For example, if whenever we find a word $w in text

$count{$w} += 1; # add 1 to word count

collects word counts in the hash %count
– If a word is not in the hash, the above expression adds it to the hash, and adding 1 makes the initial count 1,

because an undef value is treated as a zero
– A sorted list of words can be obtained with

@words = sort keys %count;

Iterating over a Hash

– Example of iterating over all key-value pairs in a hash:

my %p=(’one’=>’first’, ’two’ => ’second’);
foreach my $k (sort keys(%p)) {

my $v = $p{$k};
print "value for $k is $v\n";

}

– If we do not care about sorting keys, we can also use the special function each:

while (my ($k,$v) = each %p) {
print "$k => $v\n";

}

‘Barewords’ in Keys

– For more convenience, words without quotes, or so-called barewords, are allowed to be used in hashes like
this:

%p = (one => first, two => second);
$p{three} = ’third’;

– Even a starting minus sign is allowed, and used sometimes:

%p = (-one => first, -two => second);
$p{-three} = ’third’;

– Even the following would work:

$p{-three} = third;

but not if we defined a subroutine called ‘third’, so we should not use it.

For example, if we wanted a larger translation hash from English to French numbers, we could use:

my %fr = (one => un, two => deux, three => trois, four => quatre,
five => cinq, six => six, seven => sept, eight => huit,
nine => neuf, ten => dix);

Lab 3 p.8 CSCI 4152/6509

Barewords in Perl

– Since Perl uses so much special symbols (sigils) as starting symbols in variables, it is interesting to see how
are identifiers without such sigils treated
We usually do not have to use barewords in Perl much, but it is still useful to know how they are treated when
we read Perl code.

– Barewords are words (i.e., identifiers) that appear without initial special symbol (sigil) such as $, @, %, &, and
*

– If they are not reserved words, or pre-defined function names, they are treated as literal strings; or forbidden
if use strict is in place

– For example, the following code produces output shown:

$s = one.two; print "$s\n"; # out: onetwo
sub one { return "(1)" }
$s = one.two; print "$s\n"; # out:(1)two
sub two { return "(2)" }
$s = one.two; print "$s\n"; # out:(1)(2)

Barewords in Keys (2)

– Back to barewords in keys, hash keys have a stronger preference for barewords and are allowed even with
‘use strict;’. For example:

use strict;

my %a;
sub p { print join(’,’,%a), "\n"; }

%a = (one => ’one’); p; # out: one,one
sub one { return "(1)" }
%a = (one => one); p; # out: one,(1)
%a = (&one => one); p; # out: (1),(1)
%a = ((one) => one); p; # out: (1),(1)
%a=(); $a{one} = one; p; # out: one,(1)
%a=(); $a{&one} = one; p; # out: (1),(1)

Step 3: Example with Associative Array

– Write, test, and submit the following program in a file called lab3-test-hash.pl

#!/usr/bin/perl
File: lab3-test-hash.pl

sub four { return ’sub4’ }
sub fourth { return ’sub4th’ }

%p = (one => first, -two => second);
$p{-three} = third;
$p{four} = fourth;
$p{four2} = ’fourth’;

for my $k (sort keys %p) { print "$k => $p{$k}\n" }

CSCI 4152/6509 Lab 3 p.9

Submit: Submit the program lab3-test-hash.pl using the submit-nlp command.

Step 4: lab3-letter counter blanks.pl

4-a) Copy the following files to your lab4 directory:
˜prof6509/public/TomSawyer.txt
˜prof6509/public/lab3-letter_counter_blanks.pl

If you forgot the copy command on timberlea (a Linux system), remember that you can use the following
commands:

cp ˜prof6509/public/TomSawyer.txt .
cp ˜prof6509/public/lab3-letter_counter_blanks.pl .

The first file is the novel “The Adventures of Tom Sawyer” by Mark Twain that we saw before, and the second file
is a sample unfinished program.

4-b) Open the file lab3-letter_counter_blanks.pl and fill in three blanks.

The program counts the frequencies of letters (case insensitive) in an input text from standard input or from files
specified in the command line. It is supposed to print the letters with their frequencies in the decreasing order of
their frequency.

4-c) Run the program on the file TomSawyer.txt and save the output to the file lab3-out_letters.txt
(the following is a one-line command):

./lab3-letter_counter_blanks.pl TomSawyer.txt >
lab3-out_letters.txt

4-d) Submit lab3-letter_counter_blanks.pl and lab3-out_letters.txt

Submit: Submit the program lab3-letter_counter_blanks.pl and the file lab3-out_letters.txt using
the submit-nlp command.

Step 5: lab3-word counter.pl

Write a Perl program lab3-word_counter.pl that counts words from an input text from the standard input
or files specified in the command line (i.e., as per usual diamond <> operator). All words must be turned into
lowercase before counting. We will define a word here as a maximum sequence of Perl “word characters”: letters,
digits or the underscore, that is as a string captured by the regular expression \w+

You may want to copy your program lab3-letter_counter_blanks.pl and modify it, so that it counts
words instead of letters.

The program must not print all extracted words. Instead, it should provide answers to the following two questions:
1. What are 10 most common words in the input text? and
2. How many words appear only once in the input text?

A word that appears only once in a text is called hapax legomenon, or in plural hapax legomena.

The program must produce output in the following format:
10 most common words are:
word1 word2 word3 word4 word5 word6 word7 word8 word9 word10
The number of hapax legomena is ???
where word1 word2 etc. are the ten most common words sorted from the most frequent to the least frequent. If
some words among these ten most frequent words have the same frequency, then their exact order does not matter.

Lab 3 p.10 CSCI 4152/6509

If input does not have 10 unique words, then print as many as there are, still sorted by frequency from the most
frequent down. The string ??? above should be replaced with the number of hapax legomena.

You must include the file comment header as in previous labs in the following format:

#!/usr/bin/perl
CSCI4152/6509 Fall 2022
Program: lab3-word_counter.pl
Author: Vlado Keselj, B00123456, vlado@dnlp.ca
Description: The program is a part of Lab3 required submissions.

Run the program on the file TomSawyer.txt. Save the output to the file lab3-out_word_counter.txt:

./lab3-word_counter.pl TomSawyer.txt > lab3-out_word_counter.txt

Submit: Submit the files: lab3-word_counter.pl and lab3-out_word_counter.txt

References

References to Arrays and Hashes

A reference is a scalar pointing to another data structure, usually an array or a hash:

my @a=(’Mon’,’Tue’,’Wed’); # an array
my %h = (’one’ => ’first’, ’two’ => ’second’); # a hash

my $ref_a = \@a; # reference to an array
my $ref_h = \%h; # reference to a hash

• References are necessary in Perl to make more complex data structures, such as creating arrays of arrays

Using References (1): Scalar Variables as References

Method 1: If your reference is a simple scalar variable, then wherever the identifier of an array or hash would be
used as a part of an expression, one can use the variable that is the reference to the array or the hash, as in following
examples:

@array=@a; #using an array
@array=@$ref_a; #using a reference to an array

$element=$a[0]; #using an array
$element=$$ref_a[0]; #using a reference
$$ref_a[0]=’xxx’; #using a reference

%hash=%h; #using a hash
%hash=%$ref_h; #using a reference

$value=$h{’one’}; #using a hash
$value=$$ref_h{’one’}; #using a reference
$$ref_h{’one’}=’f’; #using a reference

CSCI 4152/6509 Lab 3 p.11

Using References (2): Using Braces { }

Method 2: Regardless whether your reference is a simple scalar or not. As Method 1, but enclose the reference in
{ }

@array=@a; #using an array
@array=@{$ref_a}; #using a reference

$element=$a[0]; #using an array
$element=${$ref_a}[0]; #using a reference

$value=$h{’one’}; #using a hash
$value=${$ref_h}{’one’}; #using a reference

While this is optional for simple scalars (i.e., you can use Method 1), this is necessary otherwise — for example
when you store references to arrays in a hash %hash_of_ref_to_arrays

$value=${$hash_of_ref_to_arrays{’one’}}[0];

Using References (3): Arrow Operator ->

Method 3: Accessing elements of arrays or hashes using references directly and using the arrow operator ->

Instead of:

$$ref_a[0]
$$ref_h{’one’}

one can use:

$ref_a->[0]
$ref_h->{’one’}

Using References (4): Omitting Arrow Operator

If the arrow -> is between bracketed indexes of arrays or hashes, e.g.,

$ref_a->[0]->[10] #$ref_a is a reference to an array
#storing references to arrays

$ref_a->[0]->{’k’} #$ref_a is a reference to an array
#storing references to hashes

$ref_h->{’one’}->{’k’} #$ref_h is a reference to a hash
#storing references to hashes

then the arrow between bracketed indexes can be omitted

$ref_a->[0][10]
$ref_a->[0]{’k’}
$ref_h->{’one’}{’k’}

Lab 3 p.12 CSCI 4152/6509

Using References to Pass Arrays or Hashes to a Subroutine

Arrays and hashes can be passed to a subroutine via references:

sub print_array {
my $ref_a=shift; #takes a reference to an array

#as a parameter
foreach my $element (@$ref_a) {

print "Element: $element\n"
}

}
sub add_element {

my ($ref_a, $element) = @_;
push(@$ref_a, $element);

}
my @a=(’Mon’,’Tue’,’Wed’); #array
add_element(\@a,’Thu’);
print_array(\@a); # array is changed

Passing Arrays or Hashes to Subroutine Directly

We can also pass arrays or hashes directly as list of arguments:

sub print_array {
foreach my $e (@_) { print "Element: $e\n" }

}

sub print_hash {
my %p = @_;
foreach my $k (keys %p) { print "$k => $p{$k}\n" }

}

print_array(1, 2, 3, ’four’);
print_hash(one=>first, two=>second,

’any key’ => ’some value’);

Let us see more closely what happens when we use call:

print_hash(one=>first, two=>second, ’any key’ => ’some value’);

with the function:

sub print_hash {
my %p = @_;

foreach my $k (keys %p) { print "$k => $p{$k}\n" }
}

Since the literal hash (one=>first, two=>second, ’any key’ => ’some value’) is passed as an
array, it is flattened into an array, that may look like:
(’one’, ’first’, ’two’, ’second’, ’any key’, ’some value’)
The order may be different, but each key must be followed with the corresponding value. When the function
print_hash is executed, this array is received as the array @_. After the command my %p = @_;, the array is
translated again into a hash named %p, and the function proceeds.

CSCI 4152/6509 Lab 3 p.13

Step 6: lab3-word counter2.pl

Copy the previous program lab3-word_counter.pl to lab3-word_counter2.pl. You should now edit
the program lab3-word_counter2.pl and add a new subroutine to it. The subroutine named f should take
two parameters: a word and a reference to the hash that stores the frequencies of words. It should return the
frequency of the input word (0, if it is not present in the hash).

Test the program lab3-word_counter2.pl on the file TomSawyer.txt to find the frequencies of the words:
‘tom’, ‘sawyer’, and ‘huck’.

You should remove the previous output of the program lab3-word_counter.pl, and add new code to print
output for the three given words. You can add some text, but the program should basically print three lines, and
mention the tree words and their frequencies in these three lines.

Submit: Submit the program lab3-word_counter2.pl

Using Perl Modules and an Ngrams Module

Perl libraries are usually implemented as modules, and we will look at a particular example of the Text::Ngrams
module. The use of this module is related to the CNG method for classification, which is or will be discussed in
the lectures. This discussion of the module is also somewhat covered in lectures, but we will now go through a
hands-on exercise of using it. The Perl module file is called Ngrams.pm and there is an associated program called
ngrams.pl. The module and the program are open-source, and can be found in the CPAN archive, but the newest
version are also available on timberlea, in the directory ˜prof6509/public. The modules are typically
installed system-wide and Perl can automatically find them. They can also be installed on a per-user basis, in a more
systematic way or in a more ad-hoc way.

Step 7: Copy Ngrams.pm and ngrams.pl

We will use here a very local ad-hoc installation. First, you will need to copy the appropriate files to your current
directory using the commands:

cp ˜prof6509/public/ngrams.pl .
cp ˜prof6509/public/Ngrams.pm .

These files may be already installed on timberlea, but to use the appropriate local version, we will do a couple
additional operations and checks. Create a subdirectory Text and copy the module there:

mkdir Text
cp Ngrams.pm Text

It is important that the module Ngrams.pm is located in the directory Text, in other words the pathname from
the current directory must be Text/Ngrams.pm, because the later execution of the ngrams.pl scripts relies on
this path.

Step 8: Checking Modified ngrams.pl

The file ngrams.pl is a part of the package Text::Ngrams, which is publicly available through CPAN.
However, the version available here is slightly modified to make sure that it uses the Ngrams module in the current
directory. You should verify that you have this version of the file. The beginning of the file ngrams.pl should
look as follows (you can check this using the command ‘more ngrams.pl’):

Lab 3 p.14 CSCI 4152/6509

#!/usr/bin/perl -w

use strict;
use vars qw($VERSION);
#<? read_starfish_conf(); echo "\$VERSION = $ModuleVersion;"; !>#+
$VERSION = 2.007;#-

use lib ’.’;

use Text::Ngrams;
use Getopt::Long;
...

The line ‘use lib ’.’;’ is important, since it directs Perl to give priority to first searching for the module in
the current directory, and then, if it is not found, to search for other versions that may be available in the system.
You can test the program ngrams.pl by typing:

./ngrams.pl

then typing some input, and pressing ‘C-d’; i.e., Control-D combination of keyboard keys. For example, if you
type input:

natural language processing

you should get the output:

BEGIN OUTPUT BY Text::Ngrams version 2.007

1-GRAMS (total count: 28)
FIRST N-GRAM: N
LAST N-GRAM: _

_ 3
A 4
C 1
E 2
G 3
I 1
L 2
N 3
O 1
P 1
R 2
S 2
T 1
U 2

2-GRAMS (total count: 27)
FIRST N-GRAM: N A
LAST N-GRAM: G _

CSCI 4152/6509 Lab 3 p.15

_ L 1
_ P 1
A G 1
A L 1
A N 1
A T 1
C E 1
E _ 1
E S 1
G _ 1
G E 1
G U 1
I N 1
L _ 1
L A 1
N A 1
N G 2
O C 1
P R 1
R A 1
R O 1
S I 1
S S 1
T U 1
U A 1
U R 1

3-GRAMS (total count: 26)
FIRST N-GRAM: N A T
LAST N-GRAM: N G _

_ L A 1
_ P R 1
A G E 1
A L _ 1
A N G 1
A T U 1
C E S 1
E _ P 1
E S S 1
G E _ 1
G U A 1
I N G 1
L _ L 1
L A N 1
N A T 1
N G _ 1
N G U 1
O C E 1
P R O 1
R A L 1
R O C 1

Lab 3 p.16 CSCI 4152/6509

S I N 1
S S I 1
T U R 1
U A G 1
U R A 1

END OUTPUT BY Text::Ngrams

These are the character n-grams of up to the size 3 of the given text, with their counts.

Step 9: Test that ngrams.pl is using the local version of Ngrams module

To test that the program is using the correct version of the module Ngrams.pm you can try inserting a ‘die’
command at the beginning of the module, and see that the program ngrams.pl will not work. The beginning of
the module should look like:

(c) 2003-2022 Vlado Keselj http://web.cs.dal.ca/˜vlado
#
Text::Ngrams - A Perl module for N-grams processing

die;

package Text::Ngrams;

use strict;
require Exporter;

It is important to note that this is the copy of the module in the subdirectory Text. After this small test, remove
again the line ‘die;’ from the Ngrams.pm module.

Step 10: Using the Ngram module

We will use now the Ngrams module to extract character n-grams from the the novel “The Adventures of Tom
Sawyer” by Mark Twain. The novel is available on bluenose as the file ˜prof6509/public/TomSawyer.txt
and you should copy it to your directory lab3 using the command:

cp ˜prof6509/public/TomSawyer.txt .

Run the script ngrams.pl with default parameters, on the file TomSawyer.txt and store the output in the file
lab3-ngram-output.txt. You can do it using the following command:

./ngrams.pl TomSawyer.txt > lab3-ngram-output.txt

You can take a look at the file lab3-ngram-output.txt using the more command. Before submitting, you
must compress the lab3-ngram-output.txt file using the command:

gzip lab3-ngram-output.txt

which will replace the file with the compressed file lab3-ngram-output.txt.gz.

Submit: Submit the output file lab3-ngram-output.txt.gz using the submit-nlp command.

This is the end of Lab 3.

	Perl Tutorial 3

